Импульса нервные клетки окружены. Нервный импульс

Изучение природы нервного импульса было связано с особыми трудностями, так как при прохождении импульса по нерву никаких видимых изменений не происходит. Лишь недавно, с развитием микрохимических методов, удалось показать, что во время проведения импульса нерв расходует больше энергии, потребляет больше кислорода и выделяет больше углекислоты, чем в состоянии покоя. Это указывает на то, что в проведении импульса, в восстановлении исходного состояния после проведения или в обоих этих процессах участвуют окислительные реакции.

Когда примерно 100 лет назад было установлено, что нервный импульс сопровождается определенными электрическими явлениями, возникло мнение, что сам импульс представляет собой электрический ток. В то время было известно, что электрический ток распространяется очень быстро, и поэтому высказывалось мнение, что скорость распространения нервного импульса слишком велика, чтобы ее можно было измерить. Десять лет спустя Гельмгольц измерил скорость проведения импульса, раздражая нерв, идущий к мышце, на различных расстояниях от мышцы и измеряя время, протекавшее между раздражением и сокращением. Таким способом он показал, что нервный импульс распространяется гораздо медленнее электрического - в нервах лягушки со скоростью около 30 м/сек. Это, конечно, свидетельствовало о том, что нервный импульс не есть электрический ток, подобный току в медном проводе. Кроме того, мертвый или раздавленный нерв все еще проводит ток, но не проводит нервных импульсов, и, раздражаем ли мы нерв током, прикосновением, приложением тепла или химическими факторами, возникающий при этом импульс распространяв "я со скоростью одного и того же порядка. Из этого мы заключаем, что нервный импульс представляет собой не электрический ток, а электрохимическое возмущение в нервном волокне. Вызванное раздражителем возмущение в одном участке нервного волокна вызывает такое же возмущение в соседнем участке и так далее до тех пор, пока импульс не дойдет до конца волокна. Таким образом, передача импульса подобна горению бикфордова шнура: от теплоты, выделяющейся при горении одного участка шнура, загорается следующий участок и т. д. В нерве роль теплоты выполняют электрические явления, которые, возникнув в одном участке, стимулируют следующий.

Передача нервного импульса сходна с горением бикфордова шнура и в некоторых других отношениях. Скорость горения шнура не зависит от количества тепла, затраченного при его зажигании, если только этого тепла достаточно, чтобы шнур загорелся. Не имеет значения и метод зажигания. Так же обстоит дело и с нервом. Нерв не будет реагировать, пока к нему не будет приложено раздражение определенной минимальной силы, но дальнейшее увеличение силы раздражения не заставит импульс распространяться быстрее. Это обусловлено тем, что энергию для проведения импульса доставляет сам нерв, а не раздражитель. Описанное явление отражено в законе «все или ничего»: нервный импульс не зависит от природы и силы вызвавшего его раздражителя, если только раздражитель обладает достаточной силой, чтобы вызвать появление импульса. Хотя скорость проведения не зависит от силы раздражителя, она зависит от состояния нервного волокна, и различные вещества могут замедлять передачу импульса или делать ее невозможной.

Сгоревший шнур нельзя использовать вторично, нервное же волокно способно восстанавливать свое исходное состояние и передавать другие импульсы. Оно, однако, не может проводить их непрерывно: после проведения одного импульса проходит определенное время, прежде чем волокно сможет передавать второй импульс. Этот промежуток времени, называемый рефрактерным периодом, продолжается от 0,0005 до 0,002 сек. В это время происходят химические и физические изменения, в результате которых волокно возвращается в первоначальное состояние.

Насколько нам известно, импульсы, передаваемые всех типов - двигательными, чувствительными или вставочными, в основном сходны между собой. То, что один

импульс вызывает ощущение света, другой - ощущение звука, третий - мышечное сокращение, а четвертый стимулирует секреторную деятельность железы, всецело зависит от природы тех структур, к которым приходят импульсы, а не от каких-либо особенностей самих импульсов.

Хотя нервное волокно можно стимулировать в любой его точке, в нормальных условиях возбуждение вызывается только на одном его конце, от которого импульс идет вдоль волокна до его другого конца1. Соединение между последовательными нейронами называется . Нервный импульс передается с кончика аксона одного нейрона на дендрит следующего через синаптическое соединение путем выделения у кончика аксона определенного вещества. Это вещество вызывает появление нервного импульса в дендрите следующего аксона. Передача возбуждения через синапс происходит значительно медленнее, чем передача его по нерву. В нормальных условиях импульсы проходят только в одном направлении: в чувствительных нейронах они идут от органов чувств к спинному и головному мозгу, а в двигательных - от головного и спинного мозга к мышцам и железам. Направление определяется синапсом, так как только кончик аксона способен выделять вещество, стимулирующее другой нейрон. Каждое отдельное нервное волокно может проводить импульс в обоих направлениях; при электрическом раздражении волокна где-либо в середине возникают два импульса, один из которых идет в одном направлении, а другой - в другом (эти импульсы можно обнаружить соответствующими электрическими приборами),. но лишь тот из них, который идет по направлению к кончику аксона, может стимулировать следующий нейрон в цепи. Импульс, идущий к дендриту, «остановится», достигнув его конца.

Химические и электрические процессы, с которыми связана передача нервного импульса, во многом сходны с процессами, происходящими при мышечном сокращении. Но проводящий импульсы нерв расходует очень мало энергии по сравнению с сокращающейся мышцей; теплота, образующаяся при раздражении нерва в течение 1 мин, в расчете на 1 г ткани эквивалентна энергии, выделяющейся при окислении 0,000001 г гликогена. Это " означает, что если бы нерв содержал в качестве источника энергии лишь 1% гликогена, его можно было бы стимулировать непрерывно в течение недели и запас гликогена не был бы исчерпан. При достаточном снабжении кислородом нервные волокна практически неутомляемы. Какова бы ни была природа «умственного утомления», это не может быть настоящим утомлением нервных волокон. Ссылки по теме

Нервный импульс - это движущаяся волна изменений в состоянии мембраны. Она включает в себя структурные изменения (открытие и закрытие мембранных ионных каналов), химические (изменяющиеся трансмембранные потоки ионов) и электрические (изменения электрического потенциала мембраны: деполяризацию, позитивную поляризацию и реполяризацию). © 2012-2019 Сазонов В.Ф..

Можно сказать короче:

"Нервный импульс - это волна изменений, движущаяся по мембране нейрона". © 2012-2019 Сазонов В.Ф..

Но в физиологической литературе в качестве синонима для нервного импульса принято использовать также и термин "потенциал действия". Хотя потенциал действия - это только электрический компонент нервного импульса.

Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

Потенциал действия - это электрическая характеристика (электрическая составляющая) нервного импульса.

Нервный импульс - это сложный структурно-электро-химический процесс, распространяющийся по мембране нейрона в виде бегущей волны изменений.

Потенциал действия - это только электрический компонент нервного импульса, характеризующий изменения электрического заряда (потенциала) на локальном участке мембраны во время прохождения через него нервного импульса (от -70 до +30 мВ и обратно). (Кликните на изображение слева, чтобы увидеть анимацию.)

Сравните два приведённых выше рисунка (покликайте по ним) и, как говорится, почувствуйте разницу!

Где рождаются нервные импульсы?

Как ни странно, не все студенты, изучившие физиологию возбуждения, могут ответить на этот вопрос. ((

Хотя ответ не сложен. Нервные импульсы рождаются на нейронах всего в нескольких местах:

1) аксонный холмик (это переход тела нейрона в аксон),

2) рецепторное окончание дендрита,

3) первый перехват Ранвье на дендрите (триггерная зона дендрита),

4) постсинаптическая мембрана возбуждающего синапса.

Места возникновения нервных импульсов:

1. Аксонный холмик - главный породитель нервных импульсов.

Аксонный холмик - это самое начало аксона, там где он начинается на теле нейрона. Именно аксонный холмик является главным породителем (генератором) нервных импульсов на нейроне. Во всех остальных местах вероятность рождения нервного импульса намного меньше. Дело в том, что у мембраны аксонного холмика повышена чувствительность к возбуждению и понижен критический уровень деполяризации (КУД) по сравнению с остальными участками мембраны. Поэтому, когда на мембране нейрона начинают суммироваться многочисленные возбуждающие постсинаптические потенциалы (ВПСП), которые возникают в самых разных местах на постсинаптических мембранах всех его синаптических контактов, то раньше всего КУД достигается именно на аксонном холмике. Там-то эта сверхпороговая для холмика деполяризация и открывает потенциал-чувствительные натриевые каналы, в которые входит поток ионов натрия, порождающий потенциал действия и нервный импульс.

Итак, аксонный холмик является интегративной зоной на мембране, он интегрирует все возникающие на нейроне локальные потенциалы (возбуждающие и тормозные) - и первый срабатывает на достижение КУД, порождая нервный импульс.

Важно также учесть следующий факт. От аксонного холмика нервный импульс разбегается по всей мембране своего нейрона: как по аксону к пресинаптическоим окончаниям, так и по дендритам к постсинаптическим "начинаниям". Все локальные потенциалы при этом снимаются с мембраны нейрона и со всех его синапсов, т.к. они "перебиваются" потенциалом действия от пробегающего по всей мембране нервного импульса.

2. Рецепторное окончание чувствительного (афферентного) нейрона.

Если нейрон имеет рецепторное окончание, то на него может воздействовать адекватный раздражитель и порождать на этом окончании сначала генераторный потенциал, а затем и нервный импульс. Когда генераторный потенциал достигает КУД, то на этом окончании открываются потенциал-зависимые натриевые ионные каналы и рождается потенциал действия и нервный импульс. Нервный импульс бежит по дендриту к телу нейрона, а затем по его аксону к пресинаптическим окончаниям для передачи возбуждения на следующий нейрон. Так работают, к примеру, болевые рецепторы (ноцицепторы), являющиеся дендритными окончаниями болевых нейронов. Нервные импульсы в болевых нейронах вознимают именно на рецепторных окончаниях дендритов.

3. Первый перехват Ранвье на дендрите (триггерная зона дендрита).

Локальные возбуждающие постсинаптические потенциалы (ВПСП) на окончаниях дендрита, которые формируются в ответ на возбуждения, приходящие к дендриту через синапсы, суммируются на первом перехвате Ранвье этого дендрита, если он, конечно, миелинизирован. Там находится участок мембраны с повышенной чувствительностью к возбуждению (пониженным порогом), поэтому именно в этом участке легче всего преодолевается критический уровень деполяризации (КУД), после чего открываются потенциал-управляемые ионные каналы для натрия - и возникает потенциал действия (нервный импульс).

4. Постсинаптическая мембрана возбуждающего синапса.

В редких случаях ВПСП на возбуждающем синапсе может быть настолько силён, что прямо там же достигает КУД и порождает нервный импульс. Но чаще это бывает возможно только в результате суммации нескольких ВПСП: или с нескольких соседних синапсов, сработавших одновременно (пространственная суммация), или за счёт того, что на данный синапс пришло несколько импульсов подряд (временная суммация).

Видео: Проведение нервного импульса по нервному волокну

Потенциал действия как нервный импульс

Ниже размещён материал, взятый из учебно-методического пособия автора данного сайта, на который вполне можно ссылаться в своём списке литературы:

Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

Все процессы мембранных изменений, происходящих в ходе распространяющегося возбуждения, достаточно хорошо изучены и описаны в научной и учебной литературе. Но не всегда это описание легко понять, поскольку в данном процессе задействовано слишком много компонентов (с точки зрения обычного студента, а не вундеркинда, конечно).

Для облегчения понимания мы предлагаем рассматривать единый электрохимический процесс распространяющегося динамичного возбуждения с трех сторон, на трех уровнях:

    Электрические явления – развитие потенциала действия.

    Химические явления – движение ионных потоков.

    Структурные явления – поведение ионных каналов.

Три стороны процесса распространяющегося возбуждения

1. Потенциал действия (ПД)

Потенциал действия – это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.

Обычно мембранный потенциал в нейронах ЦНС изменяется от –70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к –70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране.

На электрическом уровне изменения начинаются как смена поляризованного состояния мембраны на деполяризацию. Сначала деполяризация идет в виде локального возбуждающего потенциала. Вплоть до критического уровня деполяризации (примерно –50 мВ) это относительно простое линейное уменьшение электроотрицательности, пропорциональное силе воздействующего раздражителя. А вот потом начинается более крутая самоусиливающаяся деполяризация, она развивается не с постоянной скоростью, а с ускорением . Говоря образно, деполяризация так разгоняется, что перескакивает через нулевую отметку, не заметив этого, и даже переходит в положительную поляризацию. После достижения пика (обычно +30 мВ) начинается обратный процесс – реполяризация , т.е. восстановление отрицательной поляризации мембраны.

Кратко опишем электрические явления во время течения потенциала действия:

Восходящая ветвь графика:

    потенциал покоя – исходное обычное поляризованное электроотрицательное состояние мембраны (–70 мВ);

    нарастающий локальный потенциал – пропорциональная раздражителю деполяризация;

    критический уровень деполяризации (–50 мВ) – резкое ускорение деполяризации (за счет самораскрытия натриевых каналов), с этой точки начинается спайк – высокоамплитудная часть потенциала действия;

    самоусиливающаяся круто нарастающая деполяризация;

    переход нулевой отметки (0 мВ) – смена полярности мембраны;

    «овершут» – положительная поляризация (инверсия, или реверсия, заряда мембраны);

    пик (+30 мВ) – вершина процесса изменения полярности мембраны, вершина потенциала действия.

Нисходящая ветвь графика:

    реполяризация – восстановление прежней электроотрицательности мембраны;

    переход нулевой отметки (0 мВ) – обратная смена полярности мембраны на прежнюю, отрицательную;

    переход критического уровня деполяризации (–50 мВ) – прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости;

    следовые процессы (следовая деполяризация или следовая гиперполяризация);

    восстановление потенциала покоя – норма (–70 мВ).

Итак, сначала – деполяризация, затем – реполяризация. Сначала – утрата электроотрицательности, затем – восстановление электроотрицательности.

2. Ионные потоки

Образно можно сказать, что заряженные ионы – это и есть создатели электрических потенциалов в нервных клетках. Для многих людей звучит странно утверждение, что вода не проводит электрический ток. Но на самом деле это так. Сама по себе вода является диэлектриком, а не проводником. В воде электрический ток обеспечивают не электроны, как в металлических проводах, а заряженные ионы: положительные катионы и отрицательные анионы. В живых клетках основную «электрическую работу» выполняют катионы, так как они более подвижны. Электрические токи в клетках – это потоки ионов.

Итак, важно осознать, что все электрические токи, которые идут через мембрану, являются ионными потоками . Привычного нам из физики тока в виде потока электронов в клетках, как в водных системах, просто нет. Ссылки на потоки электронов будут ошибкой.

На химическом уровне мы, описывая распространяющееся возбуждение, должны рассмотреть, как изменяются характеристики ионных потоков, идущих через мембрану. Главное в этом процессе то, что при деполяризации резко усиливается поток ионов натрия внутрь клетки, а затем он внезапно прекращается на спайке потенциала действия. Входящий поток натрия как раз и вызывает деполяризацию, так как ионы натрия приносят с собой положительные заряды в клетку (чем и снижают электроотрицательность). Затем, после спайка, значительно нарастает выходящий наружу поток ионов калия, что вызывает реполяризацию. Ведь калий, как мы неоднократно говорили, выносит с собой из клетки положительные заряды. Отрицательные заряды остаются внутри клетки в большинстве, и за счет этого усиливается электроотрицательность. Это и есть восстановление поляризации за счет выходящего потока ионов калия. Заметим, что выходящий поток ионов калия возникает практически одновременно с появлением натриевого потока, но нарастает медленно и длится в 10 раз дольше. Несмотря на продолжительность калиевого потока самих ионов расходуется немного – всего одна миллионная доля от запаса калия в клетке (0,000001 часть).

Подведем итоги. Восходящая ветвь графика потенциала действия образуется за счет входа в клетку ионов натрия, а нисходящая – за счет выхода из клетки ионов калия.

3. Ионные каналы

Все три стороны процесса возбуждения – электрическая, химическая и структурная – необходимы для понимания его сущности. Но все-таки все начинается с работы ионных каналов. Именно состояние ионных каналов предопределяет поведение ионов, а поведение ионов в свою очередь сопровождается электрическими явлениями. Начинают процесс возбуждения натриевые каналы .

На молекулярно-структурном уровне происходит открытие мембранных натриевых каналов. Сначала этот процесс идет пропорционально силе внешнего воздействия, а затем становится просто «неудержимым» и массовым. Открытие каналов обеспечивает вход натрия в клетку и вызывает деполяризацию. Затем, примерно через 2-5 миллисекунд, происходит их автоматическое закрытие . Это закрытие каналов резко обрывает движение ионов натрия внутрь клетки, и, следовательно, обрывает нарастание электрического потенциала. Рост потенциала прекращается, и на графике мы видим спайк. Это вершина кривой на графике, дальше процесс пойдет уже в обратном направлении. Конечно, очень интересно разобраться в том, что натриевые каналы имеют двое ворот, и открываются они активационными воротами, а закрываются инактивационными, но это следует обсуждать ранее, в теме «Возбуждение». Мы на этом останавливаться не будем.

Параллельно в открытием натриевых каналов с небольшим отставанием во времени идет нарастающее открытие калиевых каналов. Они медлительные по сравнению с натриевыми. Открытие дополнительных калиевых каналов усиливает выход положительных ионов калия из клетки. Выход калия противодействует «натриевой» деполяризации и вызывает восстановление полярности (восстановление электроотрицательности). Но натриевые каналы опережают калиевые, они срабатывают примерно в 10 раз быстрее. Поэтому входящий поток положительных ионов натрия в клетку опережает компенсирующий выход ионов калия. И поэтому деполяризация развивается опережающими темпами по сравнению с противодействующей ей поляризацией, вызванной утечкой ионов калия. Вот почему, пока натриевые каналы не закроются, восстановление поляризации не начнется.

Пожар как метафора распространяющегося возбуждения

Для того чтобы перейти к пониманию смысла динамичного процесса возбуждения, т.е. к пониманию его распространения вдоль мембраны, надо представить себе, что описанные нами выше процессы захватывают сначала ближайшие, а затем все новые, все более и более отдаленные участки мембраны, пока не пробегут по всей мембране полностью. Если вы видели «живую волну», которую устраивают болельщики на стадионе за счет вставания и приседания, то вам легко будет представить себе мембранную волну возбуждения, которая образуется за счет последовательного протекания в соседних участках трансмембранных ионных токов.

Когда мы искали образный пример, аналогию или метафору, которая может наглядно передать смысл распространяющегося возбуждения, то остановились на образе пожара. Действительно, распространяющееся возбуждение похоже на лесной пожар, когда горящие деревья остаются на месте, а фронт огня распространяется и уходит все дальше и дальше во все стороны от очага возгорания.

Как же в этой метафоре будет выглядеть явление торможения?

Ответ очевиден – торможение будет выглядеть как тушение пожара, как уменьшение горения и затухание огня. Но если огонь распространяется сам по себе, то тушение требует усилий. Из потушенного участка процесс тушения сам по себе не пойдет во все стороны.

Существует три варианта борьбы с пожаром: (1) либо надо ждать, когда все сгорит и огонь истощит все горючие запасы, (2) либо надо поливать водой горящие участки, чтобы они погасли, (3) либо надо поливать заранее ближайшие нетронутые огнем участки, чтобы они не загорелись.

Можно ли «погасить» волну распространяющегося возбуждения?

Вряд ли нервная клетка способна «погасить» этот начавшийся «пожар» возбуждения. Поэтому первый способ подходит только для искусственного вмешательства в работу нейронов (например, в лечебных целях). Но вот «залить водичкой» некоторые участки и поставить блок распространению возбуждения, оказывается, вполне возможно.

© Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

АВТОВОЛНЫ В АКТИВНО-ВОЗБУДИМЫХ СРЕДАХ (АВС)

При распространении волны в активно-возбудимых средах не происходит переноса энергии. Энергия не переносится, а освобождается, когда до участка АВС доходит возбуждение. Можно провести аналогию с серией взрывов зарядов, заложенных на некотором расстоянии друг от друга (например, при тушении лесных пожаров, строительстве, мелиоративных работах), когда взрыв одного заряда вызывает взрыв рядом расположенного и так далее. Лесной пожар также является примером распространения волны в активно- возбудимой среде. Пламя распространяется по области с распределенными запасами энергии - деревья, валежник, сухой мох.

Основные свойства волн, распространяющихся в активно-возбудимых средах (АВС)

Волна возбуждения распространяется в АВС без затухания; прохождение волны возбуждения связано с рефрактерностью - невозбудимостью среды в течение некоторого промежутка времени (периода рефрактерности).

Мотонейрон.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов – нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления – аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну, подобно электрическим проводам присоединенным к домам.. Таким образом, один мотонейрон управляет целой группой волокон (так называемая нейромоторная единица ), которая работает как единое целое.

Мышца состоит из множества нейромоторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Рассмотрим более детальное строение клетки нейрона.

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон .

Нейроны – специализированные клетки, способные принимать, обрабатывать, передавать и хранить информацию, организовывать реакцию на раздражения, устанавливать контакты с другими нейронами, клетками органов.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый эндоплазматический ретикулум с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов).

Дендриты - ветвящиеся короткие отростки, воспринимающие сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Дендрит проводит нервные импульсы к телу нейрона.

Аксоны – длинный отросток, для проведения возбуждения от тела нейрона.

Уникальными способностями нейрона являются:

- способность генерировать электрические заряды
- передавать информацию с помощью специализированных окончаний – синапсов.

Нервный импульс.

Итак, как же происходит передача нервного импульса?
Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее «бегущий» нервный импульс в процессе распространения постоянно восстанавливается (регенерирует).
Концентрации ионов (электрически заряженных атомов) – главным образом натрия и калия, а также органических веществ – вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. «потенциал покоя» равен примерно –70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией.
Плазматическая мембрана, окружающая нейрон, – сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться.
При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом – возникает т.н. «потенциал действия», т.е. нервный импульс. Затем натриевые каналы закрываются.
Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки – т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции.
Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке.

Мы выяснили как нервный импульс проходит по нейрону, теперь разберемся с тем как же передается импульс от аксона к мышечному волокну.

Синапс.

Аксон размещается в мышечном волокне в своеобразных карманах, образующийся из выпячиваний аксона и цитоплазмы клеточного волокна.
Между ними образовывается нервно-мышечный синапс.

Нервно-мышечный синапс – нервное окончание между аксоном мотонейрона и мышечным волокном.

  1. Аксон.
  2. Клеточная мембрана.
  3. Синаптические везикулы аксона.
  4. Белок-рецептор.
  5. Митохондрия.

Синапс состоит из трех частей:
1) пресинаптического(отдающий) элемента, содержащего синаптические пузырьки (везикулы) с медиатором
2) синаптической щели (щель передачи)
3) постсинаптического(воспринимающий) элемента с белками-рецепторами, обеспечивающими взаимодействие медиатора с постсинаптической мембраной и белками-ферментами, разрушающими или инактивирующими медиатор.

Пресинаптический элемент – элемент который отдает нервный импульс.
Постсинаптический элемент – элемент принимающий нервный импульс.
Синаптическая щель – промежуток в котором происходит передача нервного импульса.

Когда нервный импульс в виде потенциала действия (трансмембранный ток, обусловленный ионами натрия и калия) «приходит» к синапсу, в пресинаптический элемент поступают ионы кальция.

Медиатор биологически активное вещество, выделяемое нервными окончаниями и передающее нервный импульс в синапсе. В передаче импульса к мышечному волокну используется медиаторацетилхолин.

Ионы кальция обеспечивают разрыв пузырьков и выход медиатора в синаптическую щель. Пройдя через синаптическую щель, медиатор связывается с белками-рецепторами на постсинаптической мембране. В результате этого взаимодействия на постсинаптической мембране возникает новый нервный импульс, который передается другим клеткам. После взаимодействия с рецепторами медиатор разрушается и удаляется белками-ферментами. Информация передается другим нервным клеткам в закодированном виде (частотные характеристики потенциалов, возникающих на постсинаптической мембране; упрощенным аналогом такого кода является штрих-код на упаковках товаров). «Расшифровка» происходит в соответствующих нервных центрах.
Не связавшийся с рецептором медиатор либо разрушается специальными ферментами, либо захватывается обратно в пузырьки пресинаптического окончания.

Завораживающее видео о том как проходит нервный импульс:

Еще более красивое видео

Синапс

Как проводится нервный импульс (слайд шоу)

Потенциал действия или нервный импульс, специфическая реакция, протекающая в виде возбуждающей волны и протекающей по всему нервному пути. Эта реакция является ответом на раздражитель. Главной задачей является передача данных от рецептора к нервной системе, а после этого она направляет эту информацию к нужным мышцам, железам и тканям. После прохождения импульса, поверхностная часть мембраны становится отрицательно заряженной, а внутренняя ее часть остается положительной. Таким образом, нервным импульсом называют последовательно передающиеся электрические изменения.

Возбуждающее действие и его распространение подвергается физико-химической природе. Энергия для проведения этого процесса образуется непосредственно в самом нерве. Происходит это из-за того, что прохождение импульса влечет образование тепла. Как только он прошел, начинается затихание или референтное состояние. В которою всего лишь долю секунды нерв не может проводить стимул. Скорость, с которой может поступать импульс колеблется в пределах от 3 м/с до 120 м/с.

Волокна, по которым проходит возбуждение, имеют специфическую оболочку. Грубо говоря, эта система напоминает электрический кабель. По своему составу оболочка может быть миелиновая и безмиелиновая. Самый главной составляющей миелиновой оболочки является – миелин, который играет роль диэлектрика.

Скорость прохождения импульса зависит от нескольких факторов, например, от толщины волокон, при чем оно толще, тем скорость развивается быстрее. Еще один фактором в повышении скорости проведения, является сам миелин. Но при этом он располагается не по всей поверхности, а участками, как бы нанизывается. Соответственно между этими участками есть те, которые остаются «голыми». По ним происходит утечка тока из аксона.

Аксоном называется отросток, с помощью него обеспечивается передача данных от одной клетки к остальным. Регулируется этот процесс с помощью синапса – непосредственной связи между нейронами или нейроном и клеткой. Еще существует, так называемое синаптическое пространство или щель. Когда поступает раздражительный импульс к нейрону, то в процессе реакции высвобождаются нейромедиаторы (молекулы химического состава). Они проходят через синаптическое отверстие, в итоге попадая на рецепторы нейрона или клетки, которой нужно донести данные. Для проведения нервного импульса необходимы ионы кальция, так как без этого не происходит высвобождение нейромедиатора.

Вегетативная система обеспечивается в основном безмиелиновыми тканями. По ним возбуждение распространяется постоянно и беспрерывно.

Принцип передачи основан на возникновении электрического поля, поэтому возникает потенциал, раздражающий мембрану соседнего участка и так по всему волокну.

При этом потенциал действия не передвигается, а появляется и исчезает в одном месте. Скорость передачи по таким волокнам составляет 1-2 м/с.

Законы проведения

В медицине присутствуют четыре основных закона:

  • Анатомо-физиологическая ценность. Проводится возбуждение только в том случае, если нет нарушения в целостности самого волокна. Если не обеспечивать единство, например, по причине ущемления, принятия наркотиков, то и проведение нервного импульса невозможно.
  • Изолированное проведение раздражения. Возбуждение может передаваться вдоль нервного волокна, никаким образом, не распространяясь на соседние.
  • Двустороннее проведение. Путь проведения импульса может быть только двух видов – центробежно и центростремительно. Но в действительности направление происходит в одном из вариантов.
  • Бездекрементное проведение. Импульсы не утихают, иными словами, проводятся без декремента.

Химия проведения импульса

Процесс раздражения так же контролируется ионами, в основном калием, натрием и некоторыми органическими соединениями. Концентрация расположения этих веществ разная, клетка заряжена внутри себя отрицательно, а на поверхности положительно. Этот процесс будет называться разностью потенциалов. При колебании отрицательного заряда, например, его уменьшении провоцируется разность потенциалов и этот процесс называется деполяризацией.

Раздражение нейрона влечет за собой открытие каналов натрия в месте раздражения. Это может способствовать вхождению положительно заряженных частиц во внутрь клетки. Соответственно отрицательный заряд снижается и происходит потенциал действия или происходит нервный импульс. После этого натриевые каналы снова прикрываются.

Часто встречается, что именно ослабление поляризации способствует открытию калиевых каналов, что провоцирует высвобождению положительно заряженных ионов калия. Этим действием уменьшается отрицательный заряд на поверхности клетки.

Потенциал покоя или электрохимическое состояние восстанавливается тогда, когда в работу включаются калий-натриевые насосы, с помощью которых ионы натрия выходят из клетки, а калия заходят в нее.

В результате можно сказать – при возобновлении электрохимических процессов и происходят импульсы, стремящиеся по волокнам.

НАУЧНО – ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

Электрическая природа нервного импульса

    Введение 3

    Опыты Л. Гальвани и А.Вольта 3

    Биотоки в живых организмах 4

    Эффект раздражимости. 5

    Нервная клетка и передача нервного импульса 6

    Действие нервного импульса на различные части тела 8

    Воздействие электрической активностью в медицинских целях 9

    Скорость реакции 10

    Вывод 11

    Литература 11

    Приложение

Введение

«Как ни чудесны законы и явления

электричества,

выявляющиеся нам в мире

неорганического или

мертвого вещества, интерес,

который они

представляют, вряд ли может

сравниться с тем,

что присуще той же силе

в соединении с нервной

системой и жизнью»

М. Фарадей

Цель работы: Определить факторы влияющие на распространение нервного импульса.

Перед данной работой стояли следующие задачи:

1. Изучить историю развития науки о биоэлектричестве.

2. Рассмотреть электрические явления в живой природе.

3. Исследовать передачу нервного импульса.

4. Проверить на практике, что влияет на скорость передачи нервного импульса.

Опыты Л. Гальвани и А.Вольта

Ещё в XVIII в. итальянский врач Луиджи Гальвани (1737-1787) обнаружил, что если к обезглавленному телу лягушки подвести электрическое напряжение, то наблюдаются сокращения её лапок. Так он показал воздействие электрического тока на мышцы, поэтому его по праву называют отцом электрофизиологии. В других опытах он подвешивал лапку от препарированной лягушки на латунном крючке. В момент, когда, раскачиваясь, лапка касалась железной решётки балкона, где производились опыты, опять наблюдалось сокращение лапки. Гальвани предположил существование между нервом и лапкой разности потенциалов - «животного электричества». Сокращение мышцы он объяснил действием электрического тока, возникающего в тканях лягушки при замыкании цепи через металл.

Соотечественник Гальвани, Алессандро Вольта (1745-1827), внимательно изучил электрическую цепь, которой пользовался Гальвани, и доказал, что в ней имеются два разнородных металла, которые замыкаются через солевой раствор, т.е. на лицо полное подобие химического источника тока. Нервно-мышечный препарат, утверждал он, в этом опыте служит всего-навсего чувствительным гальванометром.

Гальвани не мог признать своё поражение. Он набрасывал на мышцу нерв в различных условиях, чтобы доказать, что и без металла можно получать сокращение мышцы за счёт электричества «животного происхождения». Одному из его последователей это наконец удалось. Оказалось, что электрический ток возникает в тех случаях, когда нерв набрасывали на повреждённую мышцу. Так были открыты электрические токи между здоровой и повреждённой тканью. Они так и были названы - токи повреждения. Позднее было показано, что любая деятельность нервов, мышц и других тканей сопровождается генерацией электрических токов.

Таким образом, наличие биотоков в живых организмах было доказано. В наши дни их регистрируют и исследуют чувствительными приборами - осциллографами.

Биотоки в живых организмах

Интересны первые сведения об изучении электрических явлений в живой природе. Объектом наблюдений стали электрические рыбы. Опытами над электрическим скатом Фарадей установил, что электричество, создаваемое специальным органом этой рыбы, совершенно тождественно электричеству, получаемому от химического или другого источника, хотя является продуктом деятельности живой клетки. Последующие наблюдения показали, что многие рыбы имеют особые электрические органы, своего рода «батареи», вырабатывающие большие напряжения. Так, гигантский скат создаёт напряжение в разряде 50-60 В, нильский электрический сом 350 В, а угорь-электрофорус - свыше 500 В. Тем не менее на тело самой рыбы это высокое напряжение никакого действия не оказывает!

Электрические органы этих рыб состоят из мышц, которые потеряли способность к сокращениям: мышечная ткань служит проводником, а соединительная ткань - изолятором. К органу идут нервы от спинного мозга, а в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Например, угорь имеет от 6000 до 10 000 соединённых последовательно элементов, образующих колонку, и около 70 колонок в каждом органе, расположенном вдоль тела. У взрослых особей на этот орган приходится около 40% всей массы тела. Роль электрических органов велика, они служат для защиты и атаки, а также являются частью очень чувствительной навигационно-локационной системы.

Эффект раздражимости.

Одна из наиболее важных функций организма, называемая раздражимостью, - способность реагировать на изменения окружающей среды. Наиболее высокая раздражимость - у животных и человека, которые обладают специализированными клетками, образующими нервную ткань. Нервные клетки - нейроны - приспособлены для быстрого и специфического ответа на разнообразные раздражения, поступающие из внешней среды и тканей самого организма. Получение и передача раздражений происходит при помощи электрических импульсов, распространяющихся по определённым путям.

Нервная клетка и передача нервного импульса

Нервная клетка, нейрон, представляет собой звездообразное тело и состоит из тонких отростков - аксонов и дендритов. Конец аксона переходит в тонкие волокна, которые заканчиваются в мышце или синапсах. У взрослого человека длина аксона может достигать 1-1,5 м при толщине около 0,01 мм. Мембрана клетки играет особую роль в образовании и передаче нервного импульса.

То, что нервный импульс представляет собой импульс электрического тока, было доказано лишь к середине XX в., в основном работами группы А.Ходжкина. В 1963 г. А.Ходжкину, Э.Хаксли и Дж.Эклсу была присуждена Нобелевская премия по физиологии и медицине «за открытия, касающиеся ионных механизмов, участвующих в возбуждении и торможении в периферическом и центральном участках мембраны нервной клетки». Опыты проводились на гигантских нейронах (диаметр 0,5 мм) - аксонах кальмара.

Определённые части мембраны обладают полупроводниковыми и ионоселективными свойствами - пропускают ионы одного знака или одного элемента. На такой избирательной способности основано появление мембранного потенциала, от которого зависит работа информационной и энергопреобразующей систем организма. Во внешнем растворе более 90% заряженных частиц представляют собой ионы натрия и хлора. В растворе внутри клетки основную часть положительных ионов представляют ионы калия, а отрицательных - крупные органические ионы. Концентрация ионов натрия снаружи в 10 раз выше, чем внутри, а ионов калия внутри - в 30 раз выше, чем снаружи. Благодаря этому на стенке клетки возникает двойной электрический слой. Так как мембрана в состоянии покоя хорошо проницаема, между внутренней частью и внешней средой возникает разность потенциалов, составляющая 60- 100 мВ, причём внутренняя часть заряжена отрицательно. Эту разность потенциалов называют потенциалом покоя.

При раздражении клетки двойной электрический слой частично разряжается. Когда потенциал покоя снижается до 15-20 мВ, пропускная способность мембраны увеличивается, и ионы натрия устремляются в клетку. Как только положительная разность потенциалов между обеими поверхностями мембраны достигнута, поток ионов натрия иссякает. В тот же миг открываются каналы для ионов калия, и потенциал сдвигается в отрицательную сторону. Это, в свою очередь, уменьшает подводимость ионов натрия, и потенциал возвращается в состояние покоя.

Возникающий в клетке сигнал распространяется по аксону за счёт проводимости находящегося внутри него электролита. Если аксон имеет особую изоляцию - миелиновую оболочку, - то электрический импульс проходит эти участки быстрее, и общая скорость определяется величиной и количеством неизолированных участков. Скорость импульса в аксоне 100 м/с.

Каким же образом осуществляется передача сигнала через разрыв? Оказалось, что мембрана синапса неоднородна по строению - в центральных областях она имеет «окна» с низким сопротивлением, а у края сопротивление высокое. Неоднородность мембраны создаётся особым способом: с помощью специального белка - коппектина. Молекулы этого белка образуют особую структуру - копнексон, состоящую, в свою очередь, из шести молекул и имеющую внутри канал. Таким образом, синапс связывает две клетки множеством меленьких трубочек, проходящих внутри белковых молекул. Щель между мембранами заполнена изолятором. У птиц в качестве изолятора выступает белок миелин.

Когда изменение потенциалов в мышечном волокне достигает порога возбуждения электровозбудимой мембраны, в ней возникает потенциал действия и мышечное волокно сокращается.

Действие нервного импульса на различные части тела

Человечество уже не одно тысячелетие ломает голову над тем, что же происходит в мозгу у каждого человека. Сейчас известно, что в мозгу мысли рождаются под действием электрического тока, но механизм не изучен. Размышляя о взаимодействии химических и физических явлений, Фарадей сказал: «Как ни чудесны законы и явления электричества, которые мы наблюдали в мире неорганического вещества и неживой природы, интерес, который они представляют, вряд ли может сравниться с тем, что вызывает та же сила в сочетании с жизнью».

У человека тоже найдено электромагнитное поле, порождённое биоэлектрическими потенциалами на поверхности клеток. Советский изобретатель С.Д.Кирлиан сумел сделать это явление наглядным в прямом смысле слова. Он предложил фотографировать тело человека, поместив его между двумя большими металлическими стенками, к которым приложено переменное электрическое напряжение. В среде с повышенным электромагнитным полем на коже человека возникают микрозаряды, причём активнее всего ведут себя те места, где выходят наружу нервные окончания. На фотографиях, сделанных по методу Кирлиана, они видны в виде маленьких, ярко светящихся точек. Эти точки, как выяснилось, расположены именно в тех местах тела, в которые рекомендуется погружать серебряные иголки при лечении иглоукалыванием.

Таким образом, используя запись биотоков мозга как обратную связь, можно оценивать степень молитвенного погружения пациента.

Сейчас известно, что некоторые участки мозга отвечают за эмоции и за творческую деятельность. Можно определить, находится ли в возбуждённом состоянии та или иная область мозга, но расшифровать эти сигналы невозможно, поэтому можно с уверенностью сказать, что человечество ещё очень нескоро научится читать мысли.

Мысль человека - это продукт работы мозга, связанный с биоэлектрическими явлениями в нём и в других частях организма. Именно биотоки, возникающие в мышцах человека, который думает о сжимании пальцев в кулак, уловленные и усиленные соответствующей аппаратурой, сжимают пальцы механической руки.

Академики психиатр Владимир Михайлович Бехтерев и биофизик Пётр Петрович Лазарев признавали, что в каких-то особых условиях, науке ещё точно не известных, электрическая энергия одного мозга может воздействовать на расстоянии на мозг другого человека. Если этот мозг соответственно «настроен», предполагали они, можно вызвать в нём «резонансные» биоэлектрические явления и, как продукт их, соответствующие представления.

Изучение электрических явлений в организме принесло значительную пользу. Перечислим наиболее известные.

Воздействие электрической активностью в медицинских целях

О В медицине и физиологии широко используется электрохимия. Разность потенциалов между двумя точками клетки определяется с помощью микроэлектродов. С их же помощью можно измерить содержание кислорода в крови: в кровь вводится катетер, основой которого является платиновый электрод, помещённый вместе с электродом сравнения в раствор электролита, который отделён от анализируемой крови пористой гидрофобной тефлоновой плёнкой; растворённый в крови кислород диффундирует через поры тефлоновой плёнки к платиновому электроду и восстанавливается на нём.

О В процессе жизнедеятельности состояние органа, а следовательно, и его электрическая активность меняются с течением времени. Метод исследования их работы, основанный на регистрации потенциалов электрического поля на поверхности тела, называется электрографией. Название электрограммы указывает на исследуемые органы или ткани: сердца - электрокардиограмма, головного мозга - электроэнцефалограмма, мышц - электромиограмма, кожи - кожногальваническая реакция и др.

О В медицинской практике широко применяют электрофорез - для разделения белков, аминокислот, антибиотиков, ферментов с целью контроля за ходом болезни. Столь же распространён ионофорез.

О Известный аппарат «искусственная почка», к которому подключают больного при острой почечной недостаточности, основан на явлении электродиализа. Кровь протекает в узком зазоре между двумя мембранами, омываемыми физиологическим раствором, при этом из неё удаляются шлаки - продукты обмена и распада тканей.

О Исследователи из США предложили лечить эпилепсию электростимуляцией. С этой целью под кожу в верхней части груди вшивают крошечное устройство, запрограммированное на стимуляцию блуждающего нерва в течение 30 ч с интервалом 5- 15 мин. Его действие опробовано в США, Канаде, Германии. У больных, которым лекарства не помогали, через 3 месяца количество припадков сократилось на 25%, через 1,5 года - на 50%.

Скорость реакции

Одна из характеризующих мозг особенностей - это скорость реакции. Она определяется временем, за которое первый импульс движется от рецепторов органа, воспринявшего раздражение, до органа, производящего ответную реакцию организма. Из проведённого мною анкетирования следует, что на скорость реакции и внимательность влияют многие факторы. В частности, она может снижаться по следующим причинам: неинтересный и (или) монотонно излагаемый педагогом учебный материал; слабая дисциплина в классе; неясность цели и плана урока; спёртый воздух в помещении; слишком высокая или слишком низкая температура в классе; посторонний шум; наличие новых ненужных пособий, утомление к концу дня.

Существуют также индивидуальные причины невнимательности: слишком лёгкое или слишком трудное усвоение материала; неприятные семейные события; болезнь, переутомление; просмотр большого количества кинофильмов; позднее засыпание.

Вывод

Огромное влияние на нервную деятельность человека имеют слова. Чем больше слушающие доверяют говорящему, тем ярче эмоциональная окраска воспринимаемых ими слов и тем сильнее их действие. Врачу доверяет больной, педагогу - ученик, поэтому следует с особенной тщательностью выбирать слова - раздражители второй сигнальной системы. Так, хорошо уже летавший курсант лётного училища вдруг начал испытывать непреодолимый страх. Оказалось, что авторитетный для него лётчик-инструктор, уезжая, оставил ему записку: «Надеюсь, скоро увидимся, но будь осторожен со штопором».

Словом можно и вызвать заболевание, и успешно вылечить. Лечение словом - логотерапия - является частью психотерапии. Мой следующий опыт - прямое тому доказательство. Я попросил двух людей выполнять следующие действия: одновременно одной рукой круговыми движениями гладить живот, другой касаться головы вдоль прямой линии. Выяснилось, что сделать это довольно сложно - движения получались либо одновременно круговыми, либо линейными. Однако на испытуемых я воздействовал по-разному: одному говорил, что у него вот-вот получится, а другому, что у него ничего не выйдет. Через некоторое время у первого всё получилось, а у другого так ничего и не вышло.

Личными показателями необходимо руководствоваться при выборе профессии. Если скорость реакции невелика, то лучше не выбирать профессии, требующие большого внимания, быстрого анализа ситуации (лётчик, шофёр и т.п.).

Литература

    Воронков Г.Я. Электричество в мире химии. - М.: Знание, 1987.

    Третьякова С.В. Нервная система человека. - Физика («ПС»), № 47.

    Платонов К. Занимательная психология. - М.: Литер, 1997.

    Беркинблит М.Б., Глаголева Е.Г. Электричество в живых организмах. - М.: Наука, 1988.

Влияние усталости на нервный электрический импульс

Цель: проверить влияние физических нагрузок на скорость реакции.

Ход исследования: Обычное время простой реакции равно 100-200 мс - на свет, 120-150 мс - на звук и 100-150 мс - на электрокожный раздражитель. Я провел опыт по методу академика Платонова. В начале урока физической культуры, мы зафиксировали время реакции при ловле мяча, затем проверили данную реакцию после физических нагрузок.

Имя,Фамилия 11А Класс СОШ № 22

Время реакции до Физ.нагрузки

Время реакции после физ. Нагрузки

Кочарян Карен

0.13с

0.15с

Николаев Валерий

0.15с

0.16с

Казаков Вадим

0.14с

0.16с

Кузьмин Никита

0.8с

0.1с

Сафиуллин Тимур

0.13с

0.15с

Тухватуллин Ришат

0.9с

0.11с

Фарафонов Артур

0.9с

0.11с

Вывод: Нами было зафиксировано время реакции до и после физической нагрузке. Мы сделали следующий вывод, что усталость замедляет время реакции. Исходя из этого можно посоветовать учителям при составлении расписания предметы, требующие максимального внимания, ставить в середине учебного дня, когда ученики ещё не устали и способны к полноценной умственной деятельности.