Какие параметры измеряет цифровой частотомер. Частотомер – назначение и виды приборов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Частотомер - назначение и виды приборов

Частотом е р (неправ. частотометр) -- измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала.

Этот восьмиразрядный прибор может измерять частоту синусоидального и импульсного сигнала от 1 ГЦ до 50 МГц. Время измерения - 1 и 10 с. Частотомер построен на светодиодах с общим катодом. Особенностью данного частотомера является то, что в нем может быть использован любой кварц на частоты от 10 до 20 МГц. При этом в программе изменяются значения только двух регистров.

Собираясь сделать частотомер на PIC-контроллере, автор проверил схемы и программы, опубликованные в журналах. Оказалось, что только одна схема и программа были рабочими: это «Частотомер на PIC-контроллере» Д. Яблоков и В. Ульрих . Но этот частотомер имеет 3 разряда индикации с указанием их порядка. Такой точности в повседневной практике радиолюбителей явно недостаточно.

В частотомере применен микроконтроллер PIC16F873, который имеет 28 выводов. Это позволило использовать 16 выходов для непосредственного управления сегментами и разрядами светодиодов. Кроме того, этот микроконтроллер имеет три таймера с предделителями. Восьмиразрядный таймер TMR0 и его восьмиразрядный предделитель вместе с двумя дополнительными регистрами используются для подсчета измеряемой частоты. Извлечение значения предделителя выполняется известным способом, заключающимся в досчитывании значения предделителя до нуля, с одновременным подсчетом числа импульсов досчета. Таким образом, максимальная разрешающая способность счетчика составляет 32 двоичных разряда.

Таймер TMR1 имеет 16 разрядов и 3 разрядный предделитель. Этот таймер используется для формирования интервалов времени 0,1 секунды, а два последующих регистра-делителя на 10 формируют время измерения в 1 секунду и 10 секунд. При использовании кварцевых резонаторов на любую частоту достаточно сделать программную предварительную установку двух регистров таймера TMR1. При этом отпадает необходимость в точной подстройке частоты самого кварца.

Поскольку эти два таймера могут работать одновременно без участия АЛУ микроконтроллера, то появилась возможность использовать в качестве индикаторов светодиоды с динамической индикацией. На время прерываний по переполнению таймеров программа прекращает индикацию. Время, за которое выполняется прерывание, незначительно, поэтому визуально не отслеживается (видно только при частотах резонатора ниже 5 МГц).

Алгоритм работы программы частотомера показан на рис. 1, а расширенный алгоритм работы блоков: проверка кнопок, пуск измерения, досчитывание показан на рис. 1.1, 1.2, 1.3 соответственно.

После пуска и инициализации регистров микроконтроллера программа переходит к поразрядному выводу значений регистров индикации. После загрузки значения любого регистра индикации в порт выдерживается пауза в 2 миллисекунды. В каждом цикле отработки паузы декрементируется регистр паузы и проверяется значение флага 1 секунды. Если флаг равен единице, т.е. 1 секунда прошла, выполняется проверка состояния кнопок (рис. 1.1). При этом сбрасывается флаг 1 секунды. Далее проверяется состояние кнопки «Пуск». Если кнопка нажата, то проверяется флаг пуска. Если флаг пуска включен, т.е. пуск уже был, то он сбрасывается (запрещается счет). Если флаг пуска нулевой, то он устанавливается в единицу (разрешается счет). В этом цикле отработки паузы проверка кнопок прекращается. В следующих циклах, если кнопка «Пуск» не нажата, проверяется состояние кнопки времени измерения. Если кнопка времени измерения нажата, то изменяется флаг времени измерения на противоположный (1 сек. или 10 сек.).

После проверки кнопок проверяется значение флага пуска. Если частотомер в состоянии пуска, то проверяется флаг измерения. Если флаг единичный, то начался отсчет времени измерения, и программа переходит к пуску измерения (рис. 1.2). Но если пуск уже был выполнен и установлен флаг счета, то включение нового счета не производится. Если же счет не начат, то устанавливается флаг счета, обнуляются регистры досчета, разрешаются прерывания по переполнению TMR0 и открывается счетный вход. Счетный вход открывается установкой единицы на выходе RA5. От команды, открывающей счетный вход, и до команды, которая его закрывает, должно пройти время, равное времени измерения. Это время в зависимости от частоты выбранного кварцевого резонатора подбирается предварительной установкой регистров таймера TMR1.

В последующих циклах отработки паузы постоянно проверяется состояние флага счета. Как только флаг счета станет равным нулю, что говорит о прекращении времени измерения, начинается процесс извлечения значения предделителя таймера TMR0 (досчитывание, рис. 1.3). Дело в том, что непосредственная запись и считывание значения предделителя невозможно, но легко реализуется программно. Для этого на вход RA4 с выхода RA5 подаются импульсы, которые сформированы программно. При каждом импульсе значение предделителя увеличивается на единицу и одновременно с этим увеличивается значение младшего регистра счета L_B. Предварительно младший регистр счета обнуляется. Значение таймера TMR0 непосредственно переписывается в старший регистр счета H_B. После каждого сформированного программно импульса на предделитель проверяется изменение значения таймера. Если значение таймера изменилось, то досчитывание заканчивается. Таким образом осуществляется досчитывание значений предделителя до нуля, тем самым определяется значение предделителя, которое было после окончания прохождения измеряемых импульсов. Значение предделителя будет равно инвертированному значению младшего регистра счета L_B.

Программа переходит к перекодировке 32 разрядов двоичного числа в 9 разрядов двоично-десятичного числа. Девять разрядов для индикации не используются, но желательны для правильного отображения старшего разряда в режиме времени измерения 10 секунд. Например, если в режиме измерения 1 секунда три старших разряда будут равны 278, то в режиме 10 секунд двойка уйдет за пределы индикатора, а число 78 будет высвечиваться в старших разрядах индикатора. Таким образом можно точнее определить значение измеряемой частоты.

После окончания перекодировки сбрасываются все флаги. На время досчитывания запрещаются прерывания по переполнению таймера TMR1, а после окончания досчитывания выполняется новая установка регистров таймера, и разрешаются прерывания. После заполнения регистров индикации программа начинает новый цикл индикации с нулевого разряда.

Как было сказано выше, прерывания по переполнению таймера TMR1 происходят через 0,1 секунду и используются для формирования интервалов времени измерения. Алгоритм работы прерывания показан на рисунке 1.4.

После сохранения значений регистров инкрементируется регистр секунды и включается флаг выполнения измерения. Если регистр секунды еще не равен десяти, то выполняется установка регистров таймера и завершается прерывание. Установка младшего и старшего регистров таймера выполняется так, чтобы время досчитывания таймера TMR1 до нуля машинными циклами равнялось 0,1 секунды.

Если значение регистра секунды равно десяти, то проверяется флаг десяти секунд. Если флаг установлен, значит, включен режим измерения десяти секунд, поэтому обнуляется регистр секунды и инкрементируется регистр десяти секунд. Далее проверяется значение регистра десяти секунд на равенство десяти. Если значение регистра не равно десяти, то программа устанавливает регистры таймера и завершает прерывание. Если флаг десяти секунд не установлен, значит, закончилось время измерения, равное одной секунде, или если закончилось время измерения, равное десяти секундам, программа переходит к закрытию счетного входа. Обнуляются регистры времени измерения, сбрасывается флаг измерения, устанавливаются регистры таймера и прерывание завершается.

Во время счета измеряемой частоты прерывания по переполнению таймера TMR0 (рис. 1.5) возможны с любой точки программы. Если во время прерывания от TMR0 произошло прерывание по переполнению TMR1, то будет выполнено прерывание от TMR1, а после этого будет продолжаться выполнение прерывания от TMR0. Это необходимо для того, чтобы не увеличивать длительность времени измерения, следовательно, и погрешность счета.

Схема частотомера приведена на рис. 2.

Выходы порта В микроконтроллера используются для вывода значений сегментов светодиодов, а выходы порта С - для коммутации катодов разрядов. Выводы порта А RA0 и RA1 использованы как входы кнопок SB1 и SB2 соответственно «Время измерения» и «Пуск». Вывод RA5 соединен непосредственно со счетным входом RA4. С выхода RA5 на счетный вход подаются логический ноль, закрывающий вход для прохождения счетных импульсов и импульсы досчитывания.

Для превращения этого частотомера в полноценный измерительный прибор его необходимо снабдить широкополосным формирователем импульсов.

В частотомере применены две матрицы светодиодов с общим катодом фирмы «Kingbright» СС56-12GMR. Каждая матрица содержит четыре светодиода, предназначенных для динамической индикации. То есть, все одноименные сегменты светодиодов соединены между собой внутри блока. Первый вывод матрицы маркируется единичкой, которую видно под слоем герметика. Эти светодиоды приятного желто-зеленого цвета свечения имеют малый ток потребления (потребляемый ток частотомера менее 50 мA) и большие размеры цифр (высота цифры 15 мм). Естественно, можно использовать любые цифровые светодиоды с общим катодом, но тогда, возможно, потребуется подстройка яркости свечения резисторами R8-R15.

Если сделать небольшие изменения в программе, то можно использовать и светодиоды с общим анодом. Для этого в третьем блоке подпрограмм «Таблица сегментов для общего катода» необходимо заменить данные для «Катода» данными для «Анода», которые расположены как комментарии через точку с запятой. В следующей, четвертой подпрограмме индикации, метка ZIKL должна выглядеть так:

CLRF KATOD; ОБНУЛЯЕМ РЕГИСТР КАТОДОВ.

BSF KATOD,0; УСТАНАВЛИВАЕМ НУЛЕВОЙ БИТ

BCF STATUS,0; УСТАНОВИМ В 0 БИТ ЗАЕМА.

После этих замен разряды светодиодов будут переключаться высоким уровнем напряжения.

Микроконтроллер PIC16F873 можно заменить микроконтроллером PIC16F876, который тоже имеет 28 выводов и отличается увеличенной до 8 К памятью программ. При этом если вы программируете программатором PonyProg, то необходимо правильно установить тип микроконтроллера. В программе никаких изменений делать не нужно. Необходимо заметить, что микроконтроллер PIC16F873 требует более аккуратного обращения, чем PIC16F84. Вставлять и вынимать микроконтроллер в программатор и плату частотомера необходимо при выключенном питании. При плохом контакте с микросхемной панелькой микроконтроллер тоже может выйти из строя. Для того чтобы легче было вставлять и вынимать микросхему в панельку программатора, необходимо удалить незадействованные контакты микросхемной панельки.

Печатная плата частотомера показана на рис. 3, а расположение элементов на ней -- на рис. 4.

Со стороны установки элементов на верхней части платы до выводов микросхемы фольга не удаляется. Она является экраном для усилителя и соединяется с минусом питания пайкой в местах обозначенных черными точками. Все остальные отверстия над экраном раззенковываются. Поскольку четвертый вывод микроконтроллера не используется, то отверстие под него не сверлится, а четвертый контакт из микросхемной панельки удаляется. Размеры печатной платы определены размерами платы светодиодов, которая показана на рис. 5. Плата частотомера располагается за платой светодиодов.

Частотомер задумывался для работы с резонатором частотой 20 мГц, но мне не удалось раскачать отечественные кварцы. Все они возбуждались на низких частотах. В фирменной документации при использовании высокочастотных кварцев (HS) рекомендуется установка последовательно кварцу от вывода OSC2 резистора номиналом до 10 килоом. Но отечественные кварцы возбуждаться на собственной частоте не хотели. Аналогичный результат был получен и при подключении высокоомного (10-30 мОм) резистора параллельно входам OSC1 и OSC2. Естественно, при более высокой частоте резонатора частота будет измеряться точнее, но импортного резонатора мне достать не удалось. Для проведения подобного рода экспериментов по возбуждению кварца на печатной плате имеются дополнительные отверстия.

Калибровка частотомера

После изготовления частотомера необходимо выполнить его калибровку. Для этого необходимо в шестом блоке подпрограмм установить значения младшего (TMR1L) и старшего (TMR1H) регистров таймера TMR1, величина которых будет зависеть от значения используемого кварцевого резонатора. Увеличение значений регистров уменьшает время измерения, следовательно, уменьшает значение измеряемой частоты.

MOVLW 0x54; ПРЕДУСТАНОВКА РЕГИСТРОВ

MOVWF TMR1H; ТАЙМЕРА ДО ЗНАЧЕНИЯ 0,1 СЕК. (500 000 ПРИ 20 МГц).

MOVLW 0x07; (ПРИ ТОЧНОМ КВАРЦЕ 14 МГц

MOVWF TMR1L; УСТАНОВКА ДОЛЖНА БЫТЬ 55 45).

Определим для примера, какая должна быть установка регистров для резонатора с частотой F=14 мГц. Период импульсов равен: T=1/F=7,14 x 10- 8 . Один машинный цикл равен: F osc =4T=2,86 x 10- 7 . Разделим интервал времени 0,1 секунды на машинный цикл и получим число 349650. Столько машинных циклов «поместится» в 0,1 секунде. С помощью компьютерного калькулятора переведем это число в двоичный код и получим число: 1010101010111010 010. Три младших выделенных бита отбросим, поскольку они попадают на трехразрядный предделитель, а его мы установить не можем. Полученное двоичное число переведем в восьмиричное и получим число: АА ВА. Таким числом импульсов должен быть досчитан таймер, чтобы произошло прерывание через 0,1 секунды. Следовательно, необходимо найти дополнение этого числа до нуля: FF FF-AA BA=55 45. Именно это число должно быть установлено в регистрах таймера 1. Но если установить это число, то прерывания будут происходить ровно через 0,1 секунды, а нам необходимо, чтобы счетный вход RA4 открывался и закрывался через 1 или 10 секунд. А если учесть, что частота резонатора редко соответствует номинальной, то становится ясно, что это число нуждается в коррекции.

Для этого необходимо измерять частотомером образцовую частоту и производить изменения младшего регистра таймера до тех пор, пока показания индикатора будут соответствовать значению образцовой частоты. Образцовую частоту можно взять с любого промышленного частотомера или собрать простейший генератор на кварце и определить его частоту промышленным частотомером. Если у вас нет промышленного частотомера, то есть еще один способ получить более-менее точную частоту. Для этого необходимо иметь кварцевый резонатор с номиналом частоты, имеющим 4-5 цифр. Собрав генератор на таком кварце можно получить номинальную частоту с точностью указанных цифр.

Установка регистров таймера 1 не дает «абсолютной» точности потому, что мы не учитываем разрядов предделителя. Для учета этих разрядов перед закрытием счетного входа установлены команды коррекции. Для предела 1 секунда коррекция выполняется в метке СЕКХ, а для предела 10 секунд - СЕКС.

; MOVLW .1;ЭТИ 4 СТРОЧКИ НУЖНЫ ДЛЯ ТОЧНОЙ

; ADDLW -1 ;ПОДГОНКИ ВРЕМЕНИ ИЗМЕРЕНИЯ.

; BTFSS STATUS,2 ;ДЛЯ 1 СЕКУНДЫ.

Изменением числа в второй строчке и подстановкой «пустых» команд NOP, производят подгонку измеряемой частоты в пределах единиц герц. Увеличение значения при коррекции увеличивает время индикации. Необходимо помнить, что значение коррекции секунд входит в коррекцию десятков секунд умноженное на десять. Показания индикатора на обоих пределах должны совпадать. После окончания калибровки желательно проверить его работу по всему пределу измерения от 1 Гц до 50 мГц.

Если измерить частоту собственного кварца через конденсатор 68 - 200 пф, как это показано на рис. 2 пунктирной линией, то при любом резонаторе (в авторском варианте программы), получится частота: 14007 кГц. Это связано с тем, что на вход пройдет столько импульсов, сколько поместится в сформированном интервале. При кварце на большую частоту время измерения будет меньше, значит и импульсов пройдет меньше. Вернее столько, сколько и при резонаторе с частотой в 14 мГц. Изменение частоты в любую сторону вызовет обратно пропорциональное изменение времени измерения, но показания не изменятся. Становится понятным, что измерять частоту собственного резонатора можно только после окончания калибровки, да и то с целью определения точной частоты вашего резонатора.

Работа с частотомером

При подаче напряжения на индикаторе высветятся нули и запятая в третьем разряде. Запятая в третьем разряде говорит о том, что установлен режим одной секунды, а индикация осуществляется в килогерцах. При нажатии кнопки «Время измерения» запятая переместится в четвертый разряд, и частотомер перейдет в режим десяти секунд.

При нажатии кнопки «Пуск» частотомер начнет измерение. На время измерения в нулевом разряде высвечивается запятая. При закорачивании входа на корпус на индикаторе должны быть нули. Повторное нажатие кнопки «Пуск» остановит процесс измерения, но индикация измеряемой частоты сохранится. Переключение режима времени измерения можно выполнять без остановки измерения.

Частотомер на PIC16F873 и семисегментных индикаторах

частотомер измерительный прибор калибровка

Этот восьмиразрядный прибор может измерять частоту синусоидального и импульсного сигнала от 1 Гц до 50 МГц. Время измерения -- 1 и 10 с. Дисплей частотомера выполнен на семисегментных светодиодных индикаторах с общим катодом. Особенностью данного частотомера является то, что в нем может быть использован любой кварцевый резонатор на частоту в диапазоне 10...20 МГц.

В разработанном частотомере применен микроконтроллер PIC16F873 , который имеет 28 выводов. Это позволило использовать 16 выходов для непосредственного управления сегментами и разрядами светодиодных индикаторов. Кроме того, этот микроконтроллер имеет три таймера с предделителями. Восьмиразрядный таймер TMR0 и его восьмиразрядный предделитель вместе с двумя дополнительными регистрами используются для подсчета измеряемой частоты. Извлечение значения предделителя выполняется известным способом, заключающимся в досчитывании до нуля с одновременным подсчетом числа импульсов досчета. Таким образом, максимальная разрешающая способность счетчика составляет 32 двоичных разряда.

Таймер TMR1 имеет 16 разрядов и трехразрядный предделитель. Этот таймер используется для формирования интервалов времени 0,1 с, а два последующих регистра-делителя на 10 формируют время измерения в 1 и 10 с. При использовании кварцевых резонаторов на любую частоту достаточно сделать программную предварительную установку двух регистров таймера TMR1. При этом отпадает необходимость в точной подстройке частоты самого резонатора.

Поскольку эти два таймера могут работать одновременно без участия АЛУ микроконтроллера, появилась возможность обеспечить динамический запуск индикаторов. На время прерываний по переполнению таймеров программа прекращает индикацию. Время, за которое выполняется прерывание, незначительно, поэтому визуально не отслеживается (видно только при частотах резонатора ниже 5 МГц).

Схема частотомера приведена на рис. 1. Выходы порта В микроконтроллера используются для управления сегментами индикаторов, а выходы порта С -- для коммутации их катодов. Выводы порта A RA0 и RA1 управляются кнопками SB1 и SB2 (соответственно «Время измерения» и «Пуск»). Вывод RA5 соединен непосредственно со счетным входом RA4. С выхода RA5 на счетный вход подается лог. О, закрывающий вход для прохождения счетных импульсов, и импульсы досчитывания.

Для превращения этого частотомера в полноценный измерительный прибор его необходимо снабдить широкополосным формирователем импульсов. В частотомере применены две матрицы семисегментных индикаторов с общим катодом фирмы Kingbright CC56-12GMR. Каждая матрица содержит четыре индикатора, их одноименные сегменты соединены между собой внутри блока. Первый вывод матрицы маркируется единичкой, которую видно под слоем герметика. Эти индикаторы желто-зеленого цвета свечения имеют большие размеры цифр (высота цифры 15 мм) и малый ток потребления, что обеспечивает потребляемый частотомером ток менее 50 мА. Естественно, можно использовать любые цифровые индикаторы с общим катодом, но тогда, возможно, потребуется подстройка яркости свечения подбором резисторов R8--R15.

Если сделать небольшие изменения в программе, то можно использовать и светодиоды с общим анодом. Для этого в третьем блоке подпрограмм «Таблица сегментов для общего катода» необходимо заменить данные для «Катода» данными для «Анода», которые расположены как комментарии через точку с запятой. В следующей, четвертой подпрограмме индикации метка ZIKL должна выглядеть так:

CLRF KATOD; обнуляем регистр катодов

BSF KATOD, 0; устанавливаем нулевой бит

В метке INDZIKL перед сдвигом регистра KATOD необходимо установить нулевой бит переноса/заема:

BCF STATUS, 0; установим в 0 бит заема

После этих замен разряды индикаторов будут переключаться высоким уровнем.

Микроконтроллер PIC16F873 можно заменить на PIC16F876, который также имеет 28 выводов и отличается увеличенной до 8 К памятью программ. При этом, если вы пользуетесь программатором PonyProg, необходимо правильно установить тип микроконтроллера. В программе никаких изменений делать не нужно. Следует заметить, что микроконтроллер PIC16F873 требует более аккуратного обращения, чем PIC16F84. Вставлять и вынимать микроконтроллер в программатор и плату частотомера необходимо при выключенном питании. При плохом контакте с микросхемной панелькой микроконтроллер тоже может выйти из строя. Для того, чтобы легче было вставлять и вынимать микросхему в программатор, необходимо удалить неиспользуемые контакты микросхемной панельки.

Частотомер задумывался для работы с резонатором частотой 20 МГц, но мне не удалось раскачать отечественные резонаторы, все они возбуждались на низких частотах. В фирменной документации при использовании высокочастотных резонаторов (HS) рекомендуется установка последовательно с резонатором от вывода OSC2 резистора номиналом до 10 кОм. Но отечественные резонаторы возбуждаться на собственной частоте не хотели. Аналогичный результат был получен и при подключении высокоомного (10...30 МОм) резистора параллельно входам OSC1 и OSC2. Естественно, при более высокой частоте резонатора частота будет измеряться точнее, но импортный резонатор мне достать не удалось. Для проведения подобного рода экспериментов по возбуждению резонатора на печатной плате имеются дополнительные отверстия.

После изготовления частотомера необходимо выполнить его калибровку. Для этого необходимо в шестом блоке подпрограмм установить значения младшего (TMR1L) и старшего (TMR1H) регистров таймера TMR1, величина которых будет зависеть от значения частоты используемого кварцевого резонатора. Увеличение значений регистров уменьшает время измерения, следовательно, уменьшает значение измеряемой частоты.

MONLW 0x54; предустановка регистров

MOVWF TMR1H; Таймера до значения 0,1 сек.(500000 при 20МГц)

MOVLW 0x07; при точном резонаторе 14МГц

MOVWF TMR1L; установка должна быть 55 45

Определим, для примера, какая должна быть установка регистров для резонатора с частотой F = 14 МГц. Период импульсов равен: Т = 1/F = 7,14 х 10(-8). Один машинный цикл равен 4Т = = 2,86 х 10(-7). Разделим интервал времени 0,1 с на машинный цикл и получим число 349650. Столько машинных циклов «поместится» в 0,1 с. С помощью компьютерного калькулятора переведем это число в двоичный код и получим число 1010101010111010 010. Три младших выделенных бита отбросим, поскольку они попадают на трехразрядный предделитель, а его мы установить не можем. Полученное двоичное число переведем в восьмеричное и получим число АА ВА. Таким числом импульсов должен быть досчитан таймер, чтобы произошло прерывание через 0,1 с. Следовательно, необходимо найти дополнение этого числа до нуля: FF FF - АА ВА = = 55 45. Именно это число должно быть установлено в регистрах таймера 1. Но если установить это число, то прерывания будут происходить ровно через 0,1 с, а нам необходимо, чтобы счетный вход RA4 открывался и закрывался через 1 или 10 с. А если учесть, что частота резонатора редко соответствует номинальной, то становится ясно, что это число нуждается в коррекции.

Для этого необходимо измерять частотомером образцовую частоту и производить изменение младшего регистра таймера до тех пор, пока показания индикатора не станут соответствовать значению образцовой частоты. Образцовую частоту можно взять с любого промышленного частотомера или собрать простейший кварцованный генератор и определить его частоту промышленным частотомером. Если у вас нет промышленного частотомера, то есть еще один способ получить более-менее точную частоту. Для этого необходимо иметь кварцевый резонатор с номиналом частоты, имеющим 4 или 5 цифр. Собрав генератор на таком резонаторе, можно получить номинальную частоту с точностью указанных цифр.

Установка регистров таймера 1 не дает абсолютной точности потому, что мы не учитываем влияние разрядов предделителя. Для учета этих разрядов перед закрытием счетного входа установлены команды коррекции. Для предела «1 с» коррекция выполняется в метке СЕКХ, а для предела «10 с» -- СЕКС.

; MOVLW 1; эти 4 строчки нужны для точной подгонки времени измерения

; BTFSS STATUS.2 ;для 1 с.

Изменением числа во второй строчке и подстановкой «пустых» команд NOP производят подгонку измеряемой частоты в пределах единиц герц. Увеличение значения при коррекции увеличивает время индикации. Необходимо помнить, что значение коррекции секунд входит в коррекцию десятков секунд, умноженное на десять. Показания индикатора на обоих пределах должны совпадать. После окончания калибровки желательно проверить его работу по всему диапазону измерения от 1 Гц до 50 МГц.

Если измерить частоту собственного резонатора через конденсатор 68...200пФ, как это показано на рис. 1 штриховой линией, то при любом резонаторе (в авторском варианте программы) получится частота 14007 кГц. Это связано с тем, что на вход пройдет столько импульсов, сколько поместится в сформированном интервале. При резонаторе на большую частоту время измерения будет меньше, значит и импульсов пройдет меньше. Вернее столько, сколько и при резонаторе с частотой в 14 МГц. Изменение частоты в любую сторону вызовет обратно пропорциональное изменение времени измерения, но показания не изменятся. Становится понятным, что измерять частоту собственного резонатора можно только после окончания калибровки, да и то с целью определения точной частоты вашего резонатора.

При подаче напряжения питания на частотомер на индикаторе высветятся нули и запятая в третьем разряде. Эта запятая говорит о том, что установлен режим «1 с», а индикация осуществляется в килогерцах. При нажатии кнопки «Время измерения» запятая переместится в четвертый разряд и частотомер перейдет в режим «10 с».

При нажатии кнопки «Пуск» частотомер начнет измерение. На время измерения в нулевом разряде высвечивается запятая. При замыкании входа на общий провод на индикаторе должны быть нули. Повторное нажатие кнопки «Пуск» остановит процесс измерения, но индикация измеряемой частоты сохранится. Переключение режима времени измерения можно выполнять без остановки измерения.

Частотомер Э8004

Предназначен для измерения частоты в цепях переменного тока.

Основным конструктивным узлом прибора является измерительный механизм, состоящий из подвижной системы, магнитопровода, блока. Прибор имеет наружный экран для уменьшения влияния внешних магнитных полей.

Частотомер FC-8037

Артикул производителя: 10002003654

· Диапазон измерения частоты:

· - вход A, B: 0.1 Гц до 100 МГц

· - вход C: 80 МГц до 3.7 ГГц

· 9 разрядный дисплей с высоким разрешением (1 нГц/ 1 пс)

· Измерение периода, частоты, числа оборотов в минуту

· Высокая стабильность частоты термостабильного опорного кварцевого генератора: 1 ppm/год

· Встроенный ФНЧ (100 кГц, -3 dB) для точности измерений в НЧ-области

· Входной аттенюатор 10:1

· Режим связи входа AC/DC

· Интерфейс RS-232C

· Габариты: 270x240x90 (мм), вес 2.5 кг

Ч астотомер FC-8037

Частотомер с высокими техническими характеристиками обеспечивает быстрые и точные измерения частоты при приемлемой цене. Частотомер FC-8037 оптимизирован для применения в области высоких частот, с разрешением 9 разрядов в секунду, измеряет частоту, период и число оборотов в минуту. Частотомер управляется микропроцессором, чем достигается высокая точность измерений, и разрешающая способность при малом времени измерения.

· Регулировка уровня синхронизации

· Режим измерения временных интервалов

· Вход для подключения внешнего опорного генератора, 9-разрядный цифровой дисплей

· Аттенюатор

· Автопроверка

· Измерение периода повторения сигналов

· Подсчет общего количества импульсов

· Фильтр низких частот

· Линейный фильтр

Т ехнические характеристики частотомера FC-8037

характеристика частотомера FC-8037

значение

Диапазон измерения частоты: вход A, B

0.1 Гц до 100 МГц

Диапазон измерения частоты: вход C

80 МГц до 3.7 ГГц

9 разрядный с высоким разрешением (1 нГц/ 1 пс)

Встроенный ФНЧ для точности измерений в НЧ-области

100 кГц, -3 dB

Входной аттенюатор

Режим связи входа

Интерфейс

Функция фиксации текущего показания

Высокая чувствительность для внешнего опорного генератора

Обратный метод для высокого разрешения при низких частотах

Режим самодиагностики

Габариты

270x240x90 (мм), вес 2.5 кг

Размещено на Allbest.ru

Подобные документы

    Цифровой частотомер с программным управлением, его применение, принцип действия и технические характеристики. Функционирование основных блоков цифрового частотомера. Описание и расчёт основных элементов схемы электрической принципиальной частотомера.

    курсовая работа , добавлен 27.02.2009

    Построение структурной, функциональной и принципиальной схемы цифрового частотомера. Измерение частоты электрических колебаний от единиц герц до 10 МГц и амплитудой от 0,15 до 10 В с ведением счета числа импульсов входного сигнала. Выбор элементной базы.

    курсовая работа , добавлен 26.01.2015

    Методы и средства определения частоты электрических сигналов. Временное и спектральное представление. Сигналы электросвязи. Ширина полосы частот сигнала. Конструкция передающей трубки. Графики, иллюстрирующие работу устройства цифрового частотомера.

    контрольная работа , добавлен 10.01.2014

    Принцип работы цифрового частотомера, собранного на отечественном микроконтроллере КР1878ВЕ1. Входная формирующая цепь. Внешний генератор тактовых импульсов и устройство индикации. Стабилизатор напряжения питания для входной цепи и устройства индикации.

    курсовая работа , добавлен 23.08.2011

    Разработка пространственной конструкции и компоновка декодера. Аналитическое обоснование конструктивных решений. Разработка технологии изготовления модуля частотомера и печатной платы в САПР. Расчет технико-экономических показателей поточной линии сборки.

    курсовая работа , добавлен 09.06.2010

    Проектирование электронного устройства в состав, которого входит электронный усилитель электрического тока, устройство усиления частоты усиливаемого им сигнала. Расчет входной, выходной и промежуточной частей усилителя, электронно-счётного частотомера.

    контрольная работа , добавлен 28.12.2014

    Моделирование генератора с кварцевым резонатором, оценка его добротности и стабильности. Разработка электронно-счетного частотомера; расчет параметров его структурных компонентов (мультивибратора, индикатора, триггера). Конструирование блока питания.

    курсовая работа , добавлен 27.04.2011

    Высокочастотные амперметры, виды разверток и синхронизация в универсальном электронно-лучевом осциллографе. Электронно-счетный частотомер при измерении частоты СВЧ сигналов. Аналоговые измерители спектральной плотности мощности случайного сигнала.

    контрольная работа , добавлен 27.01.2010

    Рассмотрение конструкции реостатного измерительного преобразователя и принципа его работы. Изучение структурной схемы преобразования аналогового сигнала с измерительного регулятора в цифровую форму. Исследование принципа работы параллельного АЦП.

    контрольная работа , добавлен 15.01.2012

    Рассмотрение устройства, принципа действия и погрешностей импульсных и селективных вольтметров, универсальных электролучевых осциллографов, серийных цифровых частотомеров, измерителей индуктивности, емкости и корреляционной функции случайного сигнала.

Общие сведения. Электродинамические (ферродинамические) приборы состоят из электродинамического (ферродинамического) измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных и переменных токов и напряжений, мощности в цепях постоянного и переменного тока, угла фазового сдвига между переменными токами и напряжениями. .Электродинамические приборы являются наиболее точными электромеханическими приборами для цепей переменного тока.

Измерительный механизм. Вращающий момент в электроди­намических и ферродинамических измерительных механизмах возникает в результате взаимодействия магнитных полей непо­движных и подвижной катушек с токами.

Электродинамический измерительный механизм (рис.) имеет две последовательно соединенные неподвижные катушки1, разделенные воздушным зазором, и подвижную катушку 2. Ток к подвижной катушке подводится через пружинки, создающие противодействующий момент.

Успокоение создается воздушным или магнитоиндукционным успокоителем.

При протекании токов в обмотках катушек измерительного механизма возникает момент, поворачивающий подвижную часть.

Вращающий момент имеет постоянную и гармони­ческую составляющие. Отклонение подвижной части обычно при­меняемого электродинамического измерительного механизма при работе его в цепи переменного тока промышленной и более высо­кой частоты определяется постоянной составляющей момента.

В электродинамических логометрических механизмах по­движная часть состоит из двух жестко скрепленных между собой под определенным углом подвижных катушек, находящихся в по­ле неподвижных катушек. Токи к подвижным катушкам подводят с помощью безмоментных токоподводов. Анализ работы механиз­ма показывает, что угол отклонения подвижной части определя­ется отношением токов через подвижные катушки и зависит от фазовых сдвигов этих токов относительно тока через неподвиж­ную катушку.

На работу электродинамических измерительных механизмов сильное влияние оказывают внешние магнитные поля, так как собственное поле механизма невелико. Для защиты от внешних магнитных полей применяют магнитное экранирование. Иногда применяют так называемые астатические измерительные меха­низмы, на которые внешние поля действуют значительно слабее.

Особенности электродинамических измерительных механиз­мов придают электродинамическим приборам определенные по­ложительные свойства. Электродинамические измерительные ме­ханизмы работают как на постоянном, так и на переменном токе (примерно до 10 кГц.) с высокой точностью и обладают высокой стабильностью своих свойств.

Однако электродинамические измерительные механизмы име­ют низкую чувствительность по сравнению с магнитоэлектриче­скими механизмами. Поэтому приборы с электродинамическими механизмами обладают большим собственным потреблением мощности. Электродинамические измерительные механизмы име­ют малую перегрузочную способность по току, относительно сложны и дороги.


Ферродинамический измерительный механизм отличается от электродинамического механизма тем, что его неподвижные ка­тушки имеют магнитопровод из магнитомягкого листового мате­риала, позволяющий существенно увеличивать магнитный поток, а следовательно, и вращающий момент. Однако использование ферромагнитного сердечника приводит к появлению погрешно­стей, вызванных его влиянием, например погрешностей от нелинеиности кривой намагничивания, от гистерезиса при работе на постоянном токе и т. д. Ферродинамические измерительные меха­низмы мало подвержены влиянию внешних магнитных полей, так как имеют достаточно сильные собственные поля.

Амперметры и вольтметры. В электродинамических и ферро-динамических амперметрах для токов до 0,5 А неподвижные и подвижная катушки измерительного механизма соединяют по­следовательно. В этом случае токи в катушках равны.Для получения линейной зависимости, а следова­тельно равномерной шкалы, у электродинамических амперметров так располагают неподвижные катушки, чтобы зависимость приближалась к линейной. Практически у электродинамических амперметров шкала равномерна в пределах 25-100 % ее длины.

При последовательном включении катушек температурная и частотная (до 2000 Гц) погрешности электродинамических амперметров незначительны.

В амперметрах на токи свыше 0,5 А подвижную и неподвиж­ные катушки включают параллельно. В этом случае осуществля­ют компенсацию температурной и частотной погрешностей, воз­никающих из-за перераспределения токов в катушках при изме­нении температуры и частоты. Компенсацию температурной погрешности осуществляют подбором сопротивлений добавочных резисторов из манганина и меди, включаемых в каждую из па­раллельных ветвей так, чтобы температурные коэффициенты со­противления этих ветвей были одинаковыми. Компенсацию час­тотной погрешности выполняют включением добавочных катушек индуктивности или конденсаторов в соответствующие ветви схе­мы так, чтобы были равными постоянные времени этих ветвей.

Электродинамические амперметры чаще всего выпускаютна два диапазона измерений. Изменение пределов при этом произво­дится путем включения неподвижных катушек последовательно или параллельно. Для расширения пределов измерения использу­ют измерительные трансформаторы тока.

Электродинамический вольтметр состоит из электродинами­ческого измерительного механизма и добавочного резистора ста­бильного сопротивления, причем все катушки механизма и доба­вочный резистор включены последовательно.

В многопредельных вольтметрах последовательно с измери­тельным механизмом включается секционированный добавочный резистор. Поэтому многопредельные вольтметры снабжают пе­реключателем пределов или несколькими входными зажимами. Для увеличения верхнего предела измерений вольтметра приме­няют измерительные трансформаторы напряжения.

В электродинамических вольтметрах при изменении темпера­туры возникает температурная погрешность от изменения сопро­тивления цепи вольтметра. В вольтметрах с малым верхним пре­делом измерений температурная погрешность может достичь не­допустимой величины. Поэтому в таких вольтметрах уменьшают сопротивление катушек, уменьшая число витков, что приводит к увеличению тока, потребляемого прибором. Частотная погреш­ность, вызванная изменением Z прибора, компенсируется путем шунтирования части добавочного резистора конденсатором.

Основная область применения электродинамических ампер­метров и вольтметров - точные измерения в цепях переменного тока, чаще всего в диапазоне частот от 45-50 Гц до тысяч герц. Их применяют также в качестве образцовых при поверке и гра­дуировке других приборов.

Промышленность выпускает электродинамические миллиам­перметры и амперметры с верхними пределами от 1 мА до 10 А на частоты до 10 кГц, многопредельные вольтметры с верхними пределами от 1,5 до 600 В на частоты до 5 кГц. Классы точности амперметров и вольтметров 0,1; 0,2; 0,5.

Область применения ферродинамических амперметров и вольтметров - измерения переменных токов и напряжений в узком диапазоне частот при тяжелых условиях эксплуатации.

Ваттметры. Электродинамический (ферродинамический) измерительный механизм лежит в основе электродинамического (ферродинамического) ваттметра.

В этом случае (см. рис. , а) последовательно соединенные неподвижные катушки 1 включают последовательно с объектом Z, потребляемая мощность которого измеряется. Подвижная ка­тушка 2 с добавочным резистором включается параллельно объекту. Цепь неподвижных катушек называют последователь­ной цепью, а цепь подвижной катушки - параллельной цепью.

Потребляемая мощность последовательной и параллельной цепями ваттметра приводит к погрешности, зависящей от способа включения ваттметра. При измерении мощности, потребляемой объектом, возможны две схемы включения ваттметра, отличаю­щиеся способом включения параллельной цепи (рис., а и б). По­грешности заметны лишь при измерениях мощности в маломощ­ных цепях. Схему включения, показанную на рис.а, целесо­образно использовать при измерении мощности объекта с высокоомнои нагрузкой, а схему, показанную на рис. б,- при измерении мощности объекта с низкоомной нагрузкой.

Изменение порядка включения зажимов одной из цепей ваттметра (поворот соответствующего вектора тока) ведет к из­менению направлеия отклонения подвижной части измеритель­ного механизма. Поэтому для правильного включения ваттметра. один из зажимов последовательной и параллельной цепи обозна­чается звездочкой («генераторный зажим»).

Электродинамические ваттметры имеют обычно несколько верхних пределов измерения по току и напряжению: чаще всего два по току, например 5 и 10 А, и три по напряжению - 30, 150 и 300 В. Для измерения мощности при больших напряжениях и токах применяют измерительные трансформаторы напряжения и тока.

Частотомеры . В электродинамических частотомерах применя­ют логометрический измерительный механизм. Схема включения частотомера представлена на рис..

Параметры цепи подвижной катушки подбирают так, что­бы фазовый сдвиг между током и напряжением измеряемой частоты был равен 90°.

Подбором параметров цепи неподвижной катушки, под­вижной катушки и элементов L и C добиваются резонан­са напряжения в этой цепи при частоте, равной среднему значению диапазона измерений частотомера. При этом угол отклонения подвижной части логометрического измеритель­ного механизма оказывается функцией отношения реактивных сопротивлений в цепях подвижных катушекСледовательно, шкала прибора может быть градуиро­вана в единицах частоты.

Электродинамические частотомеры выпускают для измерений частоты в узком диапазоне изменений (45-55, 450-550 Гц и т. д.) классов точности 1; 1,5.

Элек­тродинамический фазометр с логометрическим измерительным механизмом представ­лен на рис. .

Если фазовый сдвиг между токами равен углу между подвижными катушками логометрического механизма, то угол отклонения подвижной части прибора равен фазовому сдви­гу между током и напряжением в нагрузке. Следовательно, шкала фазометра может быть градуирована в значениях угла j или cosj .

Электродинамические фазометры выпускают в виде перенос­ных приборов с диапазоном измерений угла j , равным 0 - 90° или О - 360°, и cosj , равным 0 -1 (для индуктивной или емкостной нагрузки) классов точности 0,2; 0,5. Предназначаются они, в ос­новном, для работы в цепях промышленной частоты.

ЭЛЕКТРОМАГНИТНЫЕ ПРИБОРЫ

Общие сведения. Электромагнитные приборы состоят из элек­тромагнитного измерительного механизма с отсчетным устройст­вом и измерительной цепи. Они применяются для измерения переменных и постоянных токов и напряжений, для измерения частоты и фазового сдвига между переменными током и напряже­нием. Из-за относительно низкой стоимости и удовлетворитель­ных характеристик электромагнитные приборы составляют боль­шую часть всего парка щитовых приборов.

Измерительный механизм. Вращающий момент в этих меха­низмах возникает в результате взаимодействия одного или не­скольких ферромагнитных сердечников подвижной части и маг­нитного поля катушки, по обмотке которой протекает ток. В на­стоящее время наибольшее применение получили конструкции измерительных механизмов с плоской катушкой, с круглой ка­тушкой и с замкнутым магнитопроводом. На рис. показан механизм с плоской катушкой.

На рисунке: / - ось; 2 - стрелка; 3 - катушка, по обмотке которой про­текает ток; 4 - эксцентрически укрепленный на оси ферромагнит­ный (пермаллоевый) сердечник;

5 - пружины для создания проти­водействующего момента; 6 - воз­душный успокоитель.

При протекании тока через катушку сердечник намагничива­ется и втягивается в зазор ка­тушки.

Вращающий момент

Частотомер - прибор, предназначенный для измерения частоты периодического процесса спектра сигнала, а также для нахождения частот гармонических элементов спектра сигнала.

Частотомеры подразделяются относительно способа, по которому производятся измерения. К такому типу относят устройства прямой оценки, такие как аналоговые, и приборы сравнительной оценки, например резонансные, гетеродинные и электронно-счетные частотомеры.

Различаются по физическому значению определяемой величины: синусоидальные колебания рассматриваются при помощи аналоговых приборов; частоты гармонических элементов определяются гетеродинными, резонансными и вибрационными частотомерами; для исследования дискретных явлений применяются электронно-счетные и конденсаторные устройства.

Также существует деление относительно конструктивного решения частотомера. Приборы могут представлять собой щитовые, переносные, стационарные конструкции.

Частотомеры предназначены для произведения электроизмерительных и радиоизмерительных работ, поэтому они могут рассматриваться как электроизмерительные частотомеры и радиоизмерительные частотомеры. Электроизмерительные частотомеры включают в себя аналоговые стрелочные частотомеры всевозможных системных решений, вибрационные, конденсаторные, электронно-счетные частотомеры; радиоизмерительные частотомеры - резонансные, гетеродинные, конденсаторные, элект-ронносчетные частотомеры.

Аналоговые стрелочные частотомеры подразделяются относительно входящего в них измерительного приспособления: электродинамические, электромагнитные, магнитоэлектрические.

Разработаны частотомеры такого типа на основе применения частотозависимой цепи, характеризуемой взаимодействием модуля полного сопротивления относительно частоты. В аналоговом устройстве предусмотрен измерительный механизм, в роли которого в основном выступает логометр. Логометр представляет собой устройство с двумя плечами, на одно плечо поступает определяемый сигнал, проходя частотонезависимую цепь, на второе сигнал поступает сквозь частотозависимую цепь. Также логометр оснащается ротором со стрелкой, который в результате взаимодействия магнитных потоков фиксируется в положении, показываемом отношением токов в обмотках.

Вибрационные (или язычковые) частотомеры относятся к устройствам с наличием мобильного компонента, представленного в виде комплекта упругих деталей, например язычков или пластин. Подвижные части включаются в резонансное колебание в результате воздействия на них переменным магнитным или электрическим полем.

Гетеродинные частотомеры разработаны на принципе исследования сравнения между частотами входного сигнала и частотой перестраиваемого генератора - гетеродина, используя метод нулевых биений.
Рабочее состояние идентично работе резонансного частотомера, описанного ниже.

Резонансные частотомеры созданы на рассмотрении сравнительных характеристик частоты входного сигнала и собственной резонансной частоты перестраиваемого резонатора, в роли которого могут выступать колебательный контур^ отрезок волновода как объемный резонатор, четвертьволновой отрезок линии.

Цепочка действия следующая: контролируемый сигнал, проходя входные цепи, отправляется на резонатор, поступив на резонатор, сигнал, проходя детектор, отправляется на индикаторное приспособление, например гальванометр. Частотомер может оснащаться усилителями, которые усиливают чувствительную способность частотомера. Резонатор при помощи оператора настраивается относительно максимального значения индикатора, отсчет частоты производится относительно лимба настройки.
Электронно-счетные частотомеры очень широко примененяются, так как обладают широким диапазоном частот в пределах от долей герца до десятков мегагерц. Чтобы увеличить диапазон до сотен мегагерц и десятков гигагерц, частотомер оснащается вспомогательными блоками, которые характеризуются как делители частоты и переносчики частоты. Электронно-счетные частотомеры также отличаются универсальностью, достаточно высокой точностью. Частотомеры этого типа могут производить измерения периода движения импульсов, отслеживать промежутки бремени, возникающие между импульсами, исследовать взаимодействие двух" Частот. Отмечено их применение как счетчиков численности импульсов. Электронно-счетные частотомеры могут производить работу, сочетая несколько способов измерения, например гетеродинный и электронно-счетный способы, при этом существенно расширяя диапазон измерения, создавая нахождение несущей частоты импульсно-модулированных сигналов.

Наипростейший частотомер изготавливается при помощи логических элементов одной микросхемы, прибор такого типа используется для измерения частоты переменного напряжения в диапазоне от 20 Гц до 20 кГц. В этом приборе роль входного элемента играет триггер Шмита, который трансформирует на входе переменное напряжение синусоидальной формы в импульсы прямоугольной формы равной частоты. Для работы триггера требуется наличие определенной амплитуды входного сигнала, которая не должна превышать пороговую величину. Шкала частотомера задается как общая для всех диапазонов измерения, к тому же практически равномерная. Необходимо задать начальную границу и конечную границу шкалы относительно всех диапазонов, в основном это поддиапазон 20-200 Гц, под который ориентируются частотные границы остальных двух поддиапазонов. Для поддиапазона 200-2000 Гц результат измерения, полученный при помощи шкалы, увеличивается в 10 раз, а для поддиапазона 20 кГц увеличение производится в 100 раз.

Для повышения чувствительности частотомера используется введение вспомогательного усилителя входного сигнала, в роли которого могут выступить маломощный полупроводниковый транзистор или аналоговая микросхема в виде трехступенчатого усилителя для видеоканалов телевизионных приемников, характеризуемых наличием большого коэффициента усиления. Частота может иметь синусоидальные, прямоугольные, пилообразные колебания, а также колебания другого вида. Колебания, проходя первый конденсатор, поступают на вход микросхемы, затем производится усиление на выходе микросхемой через второй конденсатор, и колебания отправляются на вход триггера Шмита. Еще один конденсатор включен для ликвидации внутренней отрицательной обратной связи, которая уменьшает усилительные характеристики микросхемы.

Частотомер для измерения КСВ предназначен для нахождения величин мощности, при прямой отраженной волне отображается стрелочными приспособлениями с наличием подсвечиваемой шкалы. Частотомер такого типа работает в режиме калибровки и режиме определения в результате демпфониро-вания индикаторов, осуществляя измерения флуктуирующих сигналов. Прибор есть объединение двух частотомеров, его задняя панель оснащена двумя парами разъемов, при этом одна пара ориентирована на произведение замеров КСВ, мощности в частотном диапазоне 1,8-160 МГц, вторая пара рассчитана на диапазон 140-525 МГц.

Частотомер на базе звуковой карты разработан для произведения измерения частоты звукового сигнала, который непосредственно подается на линейный вход звуковой карты.

Вибрационные и аналоговые частотомеры используются в качестве контролеров сети электропитания. Гетеродинные частотомеры применяются для создания и отслеживания настройки, эксплуатации, для контролирования над приемопередающими устройствами, для измерения несущей частоты модулированных сигналов. Электронно-счетные частотомеры используются для обслуживания, регулировки, диагностики радиоэлектронных устройств разнообразного направления, также применяются для произведения контроля рабочих состояний радиосистем, технологических процессов. Резонансные частотомеры служат для настройки, обслуживания, а также для произведения контроля над действием приемопередающих приспособлений и определения несущей частоты модулированных сигналов.

Частотомер представляет собой специализированный измерительный прибор, созданный для определения частоты, то есть периода колебаний электросигнала. Частота – один из основных показателей тока. Она определяет число колебаний за определенный временной цикл. Измеряется частота в герцах, она обратно пропорциональна периоду колебаний. Элементы оборудования, работающие на электрическом токе, должны работать на токах определенной частоты. Именно поэтому так важны устройства для определения частоты протекающего тока.

Зная частоту, можно своевременно настроить, обслужить, диагностировать и выполнить регулировку оборудования разнообразного назначения, осуществить контроль протекания технологических процессов. Приборы для измерения частоты могут иметь разное конструктивное исполнение, что определяется их назначением и особенностями работы. Подобные приборы требуются во многих областях науки и промышленности. Особенное значение приборы для измерения частоты имеют в телекоммуникационной, радиоэлектронной и электротехнической деятельности.

Виды

Частотомер, исходя из метода измерения, может быть двух типов:
  1. Аналоговые, которые предназначены для оценки частоты.
  2. Приборы сравнения, к которым относятся резонансные, гетеродинные, электронно-счетные устройства и так далее.

Аналоговые устройства предназначены в основном для определения колебаний синусоидального характера. Приборы сравнения применяются для измерения дискретных частот, гармонических параметров и так далее. Подобные устройства используются в большей части случаев для измерения частоты гармонического характера, находящихся в диапазоне 20-2500 Герц. Однако они имеют ограниченность использования, что вызвано невысокой точностью и высокой потребляемой мощностью.

В зависимости от типа конструктивного исполнения устройства бывают стационарными, переносными, либо щитовыми. Конкретный тип конструкции определяется областью применения устройства.

Больше всего распространены устройства прямого отсчета, то есть цифровые устройства. Они позволяют с удобством и высокой точностью измерять необходимые параметры частоты. Главная их особенность в том, что они подсчитывают число импульсов, поступающих от входного формирователя за конкретный период времени. Данный прибор способен измерить не только частоту, но также периоды времени и число импульсов.

Цифровые устройства позволяют выполнять с большой точностью исследования частот импульсного и гармонического характера в пределах 10 Гц – 50 ГГц. Подобные приборы в основном применяются для измерения частот, временных параметров.

По принципу действия подобный частотомер можно классифицировать на 4 группы:
  1. Устройства средних значений, которые являются наиболее распространенными. При помощи этих устройств можно измерять среднее значение частоты за определенное время. Пределы измеряемых частот составляют от 10 герц до 100 мегагерц. При использовании специальных преобразователей данный предел можно расширить до 1000 мегагерц.
  2. Устройства мгновенных значений. При помощи них можно узнать частоту в узком диапазоне. Подобные приборы чаще всего применяют для измерения инфранизких и низких частот.
  3. Устройства номинальных значений применяются с целью исследования изменений частот в узких пределах. Процентные устройства измеряют частоту в относительных единицах.
  4. Следящие устройства лучше всего подходят для измерения средних частот. Они измеряют частоту непрерывно. Если говорить прямо, то все электронные, а также электромеханические устройства являются следящими. К их преимуществам можно отнести возможность создания отчетов в каждый момент времени. К следящим устройствам также относятся и многие цифровые приборы.

В отдельную категорию можно выделить устройства, которые расширяют функционал следящих устройств. Это могут быть сервисные или универсальные приборы. Сервисные устройства имеют малые габариты, так как в них применяются интегральные схемы. Чаще всего они применяются в качестве автономных устройств, переносных, а также встроенных агрегатов в структуре автоматизированных систем. Их можно использовать для измерения разных величин.

Универсальные аппараты в большинстве случаев многофункциональны. Они имеют конструкцию, которая позволяет задействовать сменные блоки. Благодаря этому можно существенно повысить их функциональность. Специализированные устройства заточены под конкретные параметры измерений, поэтому в большей части случаев у них более простая конструкция.

Устройство

Частотомер может иметь разное конструктивное исполнение. К примеру, электронно-счетное устройство выделяется блочно-модульным исполнением. Его базу составляет кроссплата, где монтируются модульные платы. От них выходят проводники на управляющие и индикаторные элементы, в том числе входящие и выходящие разъемы. Лампы и индикаторы находятся в модуле, которой расположен за панелью. Индикация осуществляется динамически.

В отдельной кассете находится блок питания и генератор. Имеется возможность подключить внешний генератор. Для защиты от перегрева используется термостат. Вычисление осуществляется с помощью декад и делителей. Кроме того, в состав устройства входят умножитель, узел сброса и самонастройки, автоматический блок и входной формирователь. В качестве элементной базы для этих элементов используются транзисторы. Подобные устройства уже считаются устаревшими, но все равно иногда применяются.

Самый простой частотомерпроизводится на базе микросхем. В качестве входного элемента используется триггер Шмидта, трансформирующий напряжение синусоидального характера в импульсы одинаковой частоты. Чтобы триггер нормально работал, требуется конкретная амплитуда входного сигнала. Важно, чтобы она не была выше заданной величины. Чтобы повысить чувствительность, в устройстве может применяться дополнительный усилитель входящего сигнала. К примеру, для этого может быть использован полупроводниковый транзистор малой мощности либо аналоговая микросхема.

Когда колебания проходят через конденсатор, происходит усиление его показателей посредством второго конденсатора. После этого колебания направляются на вход триггера. Следующий конденсатор убирает обратную связь. Чтобы пользователь мог увидеть показатели частоты, используются стрелочные приспособления, а также подсвечиваемая шкала.

Принцип действия

Частотомерпозволяет определить частоту тока в элементе какого-нибудь оборудования. Например, Вам надо получить схему, которая состоит из 2-х блоков: передатчика и приемника. До готовности передатчика можно задействовать генератор сигналов. Большинство генераторов способно обеспечить создание сигналов с разными параметрами.

Чтобы точно определить частоту сигнала необходимо подключить генератор к входу устройства для измерения частоты. У ряда генераторов имеются встроенные модули, предназначенные для определения частоты. Цифровой частотомер использует счетно-импульсный принцип, благодаря которому счетный блок подсчитывает число импульсов, поступающих на вход за конкретный период времени. То есть устройство осуществляет подсчет числа импульсов, период времени определяется с помощью опорных частот.

На входе устройства измеряемое колебание усиливается, превращаясь в последовательность усиленных импульсов с такой же частотой, которую и необходимо измерить. В то же время кварцевый генератор создает последовательность эталонных импульсов, которые приводят к старту схемы управления. В качестве нее выступает стробирующая схема. Она задает стандартное время измерений, за которое подаются колебания на вход. Счетчик устройства подсчитывает импульсы за данный период времени. Их количество выводится на цифровом индикаторе. В случае необходимости нового измерения имеется кнопка, которая направляет сигнал на схему сброса. Она ставит счетчик в нулевое положение.

Применение

Универсальный частотомер в большинстве случаев используется для автоматизированного определения частоты, непрерывности сигналов, времени, пика напряжения, которое является входящим. Также устройство применяется с целью исследования времени прохождения импульсов, времени, фазового сдвига между сигналов, исследования отношений частотных характеристик, подсчитывания количества импульсов.

Частотомер в большей части случаев используется с целью настраивания, испытания и калибрующих работ в разнообразных устройствах. К примеру, это могут быть преобразователи, генераторы, фильтрующие устройства. Частотомеры часто применяют для настраивания оборудования связи и так далее. Они довольно часто применяются в связном деле, измерительной технике, навигации, локации, ядерной физике, электронике, а также при создании, изготовлении и эксплуатации радиоэлектронных устройств.

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.