Микроскоп строение и функции. Какое строение у микроскопа

РАЗДЕЛ: ЦИТОЛОГИЯ

ТЕМА:«УСТРОЙСТВО СВЕТОВОГО МИКРОСКОПА И ТЕХНИКА МИКРОСКОПИРОВАНИЯ».

Форма организации учебного процесса: практическое занятие.

Место проведения: учебная комната.

Цель занятия: на основании знания устройства светового микроскопа освоить технику микроскопирования и приготовления временных препаратов.

Значимость изучаемой темы

Световая микроскопия – один из объективных методов биологических, медико-биологических и медицинских дисциплинах. Умение правильно пользоваться микроскопом, грамотно оценивать, интерпретировать, документировать (зарисовывать) наблюдаемую микроскопическую картину являются обязательным условием успешного освоения материала на практических занятиях по биологии, гистологии, патологической анатомии, микробиологии.

В результате работы на практическом занятии студент должен

знать:

· устройство светового микроскопа;

· правила работы со световым микроскопом.

уметь:

· работать со световым микроскопом на малом и большом увеличениях;

· готовить временный препарат;

· оформлять зарисовки микроскопических препаратов;

· оформлять протокол занятия.

Оснащение занятия:

Компьютер;

Проектор;

Презентация Power Point по теме;

Световой микроскоп;

Бинокуляр;

Микропрепараты (любые);

Предметные стекла;

Покровные стекла;

Чашки Петри;

Скальпель;

Марлевые салфетки;

Фильтровальная бумага;

Спиртовый раствор йода;

Луковица.

ПРАКТИЧЕСКАЯ ЧАСТЬ ЗАНЯТИЯ

РАБОТА № 1. УСТРОЙСТВО СВЕТОВОГО МИКРОСКОПА.

Задание 1:

  • внимательно прочитайте содержание работы № 1 и изучите устройство светового микроскопа.

Рассмотрите основные части микроскопа: механическую, оптическую, осветительную.

К механической части относятся: штатив, предметный столик, тубус, револьвер, макро- и микрометрические винты.

Штатив состоит из массивного подковообразного основания, придающего микроскопу необходимую устойчивость. От середины основания вверх отходит тубусодержатель, изогнутый почти под прямым углом, к нему прикреплен тубус, расположенный наклонно.

На штативе укреплен предметный столик с круглым отверстием в середине. На столик помещают рассматриваемый объект (отсюда название «предметный»). На столике имеются два зажима, или клеммы, неподвижно фиксирующие препарат. По бокам столика расположены два винта – препаратовыделители, при вращении которых столик передвигаются вместе с объективом в горизонтальной плоскости. Через отверстие в середине столика проходит пучок света, позволяющий рассматривать объект в проходящем свете.

На боковых сторонах штатива, ниже предметного столика, найдите два винта, служащие для передвижения тубуса. Макрометрический винт, или кремальера, имеет большой диск и при вращении поднимает или опускает тубус для ориентировочной наводки на фокус. Микрометрический винт, имеющий наружный диск меньшего диаметра, при вращении перемещает тубус незначительно и служит для точной наводки на фокус. Вращать микрометрический винт можно только на полоборота в обе стороны.

Оптическая часть микроскопа представлена окулярами и объективами.

Окуляр (от лат. oculus - глаз) находится в верхней части тубуса и обращен к глазу. Окуляр представляет собой систему линз, заключенных в металлическую гильзу цилиндрической формы. По цифре на верхней поверхности окуляра можно судить о кратности его увеличения (Х 7, Х 10, Х 15). Окуляр можно вынимать из тубуса и заменять по мере надобности другим.

На противоположной стороне найдите вращающуюся пластинку, или револьвер (от лат. revolvo - вращаю), в которой имеется 3 гнезда для объективов. Как и окуляр, объектив представляет собой систему линз, заключенных в общую металлическую оправу. Объектив ввинчивается в гнездо револьвера. Объективы также имеют различную кратность увеличения, которая обозначается цифрой на его боковой поверхности. Различают: объектив малого увеличения (Х 8), объектив большого увеличения (Х 40) и имерсионный объектив, используемый для изучения наиболее мелких объектов (Х 90).

Общее увеличение микроскопа равно увеличению окуляра, умноженному на увеличение объектива. Таким образом, световой микроскоп имеет максимальную кратность увеличения 15 Х 90 или может максимально увеличивать в 1350 раз.

Осветительная часть микроскопа состоит из зеркала, конденсора и диафрагмы.

Зеркало укреплено на штативе ниже предметного столика и благодаря подвижному креплению его можно вращать в любом направлении. Это дает возможность использовать источники света, расположенные в различных направлениях по отношению к микроскопу, и направлять пучок света на объект через отверстие в предметном столике. Зеркало имеет две поверхности: вогнутую и плоскую. Вогнутая поверхность сильнее концентрирует световые лучи и поэтому используется при более слабом, искусственном освещении.

Конденсор находится между зеркалом и предметным столиком, он состоит двух-трех линз, заключенных в общую оправу. Пучок света, отбрасываемый зеркалом, проходит через систему линз конденсора. Меняя положение конденсора (выше, ниже), можно изменить интенсивность освещенности объекта. Для перемещения конденсора служит винт, расположенный кпереди от макро и микровинтов. При опускании конденсора освещенность уменьшается, при поднимании – увеличивается. Диафрагма, вмонтированная в нижнюю часть конденсора, также служит для регуляции освещения. Эта диафрагма состоит из ряда пластинок, расположенных по кругу и частично перекрывающих друг друга таким образом, что в центре остается отверстие для прохождения светового пучка. С помощью специальной ручки, расположенной на конденсоре с правой стороны, можно менять положение пластинок диафрагмы относительно друг друга и таким образом уменьшать или увеличивать отверстие и, следовательно, регулировать освещенность.

В отличие от лупы, микроскоп имеет как минимум две ступени увеличения. Функциональные и конcтруктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Микроскоп включает в себя три основные функциональные части.

Осветительная часть предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть включает источник света (лампа и электрический блок питания), и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые ирисовые диафрагмы).

Воспроизводящая часть предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т.е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим для данной оптики микроскопа разрешением, увеличением, контрастом и цветопередачей). Воспроизводящая часть включает объектив и промежуточную оптическую систему. Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем (линз), которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

Визуализирующая часть предназначена для получения реального изображения объекта на сетчатке глаза, фотопленке или пластинке, на экране телевизионного или компьютерного монитора
Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системой (окулярами, которые работают как лупа). Кроме того, к этой части относятся системы дополнительного увеличения; проекционные насадки, в том числе для наблюдения несколькими исследователями (при коллективном анализе обсуждении микроструктуры препаратов); рисовальные аппараты; системы анализа и документирования изображения с соответствующими адапторными (согласующими) элементами.

1. Окуляр
2. Диоптрийная настройка
3. Револьвер
4. Микрообъективы
5. Предметный столик
6. Осветитель
7. Полевая диафрагма
8. Основание микроскопа
9. Бинокулярная насадка
10. Штатив микроскопа
11. Регулятор перемещения по высоте кронштейна конденсора
12. Механизм грубой фокусировки
13. Механизм точной фокусировки
14. Рукоятки перемещения предметного столика
15 .Регулятор яркости
16. Конденсор
17. Винты конденсора
18. Рукоятка открытия апертурной диафрагмы
19. Держатель светофильтров


На нашем сайте Вы можете выбрать и купить микроскоп , который будет оптимальным образом отвечать поставленной задаче по своим увеличительным возможностям. Осуществляемая нашей компанией продажа микроскопов , охватывает только качественные образцы, прошедшие необходимое тестирование и доказавшие свою эффективность опытным путем.
Приобретая микроскопы в компании "МЕДТЕХНИКА-СТОЛИЦА", Вы можете быть уверены в их высоком качестве и надежности.

Если Вы хотите купить микроскоп позвоните нам, и мы ответим на все интересующие вопросы, подберем вместе с Вами нужную комплектацию прибора!

Материалы и оборудование . Микроскопы: МБР-1, БИОЛАМ, МИКМЕД-1, МБС-1; комплект постоянных микропрепаратов

Микроскоп - это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей способности глаза.

Что такое разрешающая способность?

Представьте себе, что невооруженным глазом человек может различить две очень близко лежащие линии или точки лишь в том случае, если расстояние между ними будет не менее 0,10 мм (100 мкм). Если же это расстояние будет меньше, то две линии или точки сольются в одну. Таким образом, разрешающая способность человеческого глаза равна 100 мкм. Поэтому, чем больше разрешающая способность объектива, тем больше подробностей строения наблюдаемого объекта можно выявить. Для объектива (х8) разрешающая способность равна 1,68 мкм, для объектива (х40) – 0,52 мкм.

Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.

Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.

Различают полезное ибесполезное увеличения . Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное - это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с помощью микроскопа (полезное!), увеличить еще во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.

В учебных лабораториях обычно используют световые микроскопы , на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространенысветовые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз.Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.

В микроскопе выделяют две системы: оптическую имеханическую (рис.1). Коптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).

Рисунок 1. Внешний вид микроскопов Биомед 1 и Биомед 2

Объектив - одна из важнейших частей микроскопа, поскольку он определяетполезное увеличение объекта. Объектив состоит из металлического цилиндра с вмонтированными в него линзами, число которых может быть различным. Увеличение объектива обозначено на нем цифрами. В учебных целях используют обычно объективы х8 и х40. Качество объектива определяет его разрешающая способность.

Объектив требует очень бережного обращения, особенно это касается объективов с большим увеличением, т.к. у них рабочее расстояние, т.е. расстояние от покровного стекла до фронтальной линзы, измеряется десятыми долями миллиметра. Например, рабочее расстояние для объектива (х40) составляет 0,6 мм.

Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля зрения. Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличениебесполезно . Таким образом, окуляр, подобно лупе, дает прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.

Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра. Например, если окуляр дает 10-кратное увеличение, а объектив - 20-кратное, то общее увеличение 10x20 = 200 раз.

Осветительное устройство состоит из зеркала или электроосветителя, конденсора с ирисовой диафрагмой и светофильтром, расположенных под предметным столиком. Они предназначены для освещения объекта пучком света.

Зеркало служит для направления света через конденсор и отверстие предметного столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.

Электроосветитель устанавливается под конденсором в гнездо подставки.

Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъеме или опускании его с помощью специального винта соответственно конденсируется или рассеивается свет, падающий от зеркала на объект.

Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.

Кольцо с матовым стеклом илисветофильтром уменьшает освещенность объекта. Оно расположено под диафрагмой и передвигается в горизонтальной плоскости.

Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.

Подставка - это основание микроскопа.

Коробка с микрометренным механизмом , построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторонуне более чем на половину оборота .

Тубус илитрубка - цилиндр, в который сверху вставляют окуляры. Тубус подвижно соединен с головкой тубусодержателя, его фиксируют стопорным винтом в определенном положении. Ослабив стопорный винт, тубус можно снять.

Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.

Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.

Предметный столик предназначен для расположения на нем препарата. В середине столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы - зажимы, закрепляющие препарат.

Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.

Что ни говорите, а микроскоп является одним из важнейших инструментов ученых, одним из главных их оружий в познании окружающего мира. Как появился первый микроскоп, какая история микроскопа от средних веков и до наших дней, какое строение микроскопа и правила работы с ним, ответы на все эти вопросы Вы найдете в нашей статье. Итак, приступим.

История создания микроскопа

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен — изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг , а не наоборот. Среди важных изобретений Галилея — первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», — наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы. Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа.

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

Так выглядит современный электронный микроскоп.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Рентгеновский микроскоп

Рентгеновские микроскопы используются для исследования очень маленьких объектов, имеющих размеры сопоставимые с размерами рентгеновской волны. В основе их работы лежит электромагнитное излучение с длиной волны от 0,01 до 1 нанометра.

Устройство микроскопа

Конструкция микроскопа зависит от его вида, разумеется, электронный микроскоп будет отличаться своим устройством от светового оптического микроскопа или от рентгеновского микроскопа. В нашей статье мы рассмотрим строение обычного современного оптического микроскопа, который является наиболее популярным как среди любителей, так и профессионалов, так как с их помощью можно решить множество простых исследовательских задач.

Итак, прежде всего в микроскопе можно выделить оптическую и механическую части. К оптической части относится:

  • Окуляр – это та часть микроскопа, которая прямо связана с глазами наблюдателя. В самых первых микроскопах он состоял из одной линзы, конструкция окуляра в современных микроскопах, разумеется, несколько сложнее.
  • Объектив – практически самая важная часть микроскопа, так как именно объектив обеспечивает основное увеличение.
  • Осветитель – отвечает за поток света на исследуемый объект.
  • Диафрагма – регулирует силу светового потока, поступающего на исследуемый объект.

Механическая часть микроскопа состоит из таких важных деталей как:

  • Тубус, он представляет собой трубку, в которой заключается окуляр. Тубус должен быть прочным и не деформироваться, так как иначе пострадают оптические свойства микроскопа.
  • Основание, оно обеспечивает устойчивость микроскопа во время работы. Именно на него крепится тубус, держатель конденсатора, ручки фокусировки и другие детали микроскопа.
  • Револьверная головка – применяется для быстрой смены объективов, в дешевых моделях микроскопов отсутствует.
  • Предметный столик – это то место, на котором размещается исследованный объект или объекты.

А тут на картинке изображено более подробное строение микроскопа.

Правила работы с микроскопом

  • Работать с микроскопом необходимо сидя;
  • Перед работой микроскоп необходимо проверить и протереть от пыли мягкой салфеткой;
  • Установить микроскоп перед собой немного слева;
  • Начинать работу стоит с малого увеличения;
  • Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;
  • Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;
  • Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;
  • Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две черточки, а на микрометренном винте — точка, которая должна все время находиться между черточками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;
  • По завершении работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

Первые понятия о микроскопе формируются в школе на уроках биологии. Там дети узнают на практике, что с помощью этого оптического прибора можно рассматривать маленькие объекты, которые невозможно увидеть невооруженным глазом. Микроскоп, строение его интересуют многих школьников. Продолжением этих интересных уроков для кого-то из них становится вся дальнейшая взрослая жизнь. При выборе некоторых профессий необходимо знать строение микроскопа, так как он является основным инструментом в работе.

Строение микроскопа

Устройство оптических приборов соответствует законам оптики. Строение микроскопа основывается на его составных частях. Узлы прибора в виде тубуса, окуляра, объектива, стойки, столика для расположения осветителя с конденсором имеют определенное назначение.

Стойка удерживает на себе тубус с окуляром, объективом. К стойке прикреплен предметный столик с осветителем и конденсором. Осветитель - это встроенная лампа или зеркальце, служащее для освещения исследуемого объекта. Изображение получается более ярким у осветителя с электрической лампой. Назначение конденсора в этой системе заключается в регулировании освещенности, фокусировании лучей на изучаемом предмете. Известно строение микроскопов без конденсоров, в них устанавливается одиночная линза. В практической работе удобнее пользоваться оптикой с подвижным столиком.

Строение микроскопа, его конструкция непосредственно зависят от предназначения этого прибора. Для научных исследований используется рентгеновское и электронное оптическое оборудование, имеющее более сложное устройство, чем световые приборы.

Строение светового микроскопа отличается простотой. Это самые доступные они наиболее широко применяются в практике. Окуляр в виде двух увеличительных стекол, помещенных в оправу, и объектив, который также состоит из увеличительных стекол, заправленных в оправу, - вот главные узлы светового микроскопа. Весь этот набор вставлен в тубус и прикреплен к штативу, в который вмонтирован и предметный столик с расположенным под ним зеркалом, а также осветитель с конденсором.

Главным принципом работы светового микроскопа является увеличение изображения размещенного на предметном столике посредством прохождения через него лучей света с дальнейшим попаданием их на систему линз объектива. Такую же роль выполняют линзы окуляра, которыми пользуется исследователь в процессе изучения объекта.

Нужно отметить, что световые микроскопы тоже не одинаковы. Разница между ними определяется количеством оптических блоков. Различаются монокулярные, бинокулярные или стереомикроскопы с одним или двумя оптическими блоками.

Несмотря на то, что эти оптические приборы используются уже многие годы, они остаются невероятно востребованными. С каждым годом они совершенствуются, становятся точнее. Еще не сказано последнее слово в истории таких полезных приборов, как микроскопы.