Понятие дистанционное зондирование земли. Спутники дистанционного зондирования земли

Лекция. Введение в ДЗ

Обработка и дешифрирование аэрокосмических изображений является актуальным и перспективным направлением научно-практической деятельности человечества. Происходит это потому, что оперативное получение материалов дистанционного зондирования Земли (ДЗЗ) из космоса позволяет решать целый круг весьма сложных и важных задач, находить ответы на многие интересующие вопросы. Эти вопросы охватывают практически все сферы повседневной жизни людей. К ним относятся, например, такие важные, как проблемы экологии и мониторинга окружающей среды, природопользование и эффективное управление земельными ресурсами, военное дело, борьба с терроризмом, картографирование и другие.

Обработка и дешифрирование аэрокосмических изображений являются неотъемлемой составляющей дистанционного зондирования (ДЗ). Дадим несколько наиболее известных определений ДЗ.

Дистанционное зондирование - получение и измерение данных о некоторых характеристиках явления, объекта или материала записывающим устройством, не находящимся в физическом, непосредственном контакте с объектом исследования; технические приемы, включающие в себя накопление знаний о свойствах окружения путем измерения силовых полей, электромагнитного излучения или акустической энергии с применением камер, лазеров, радиоприемников, радарных систем, сонаров, теплорегистрирующих устройств, сейсмографов, магнетометров, гравиметров, сцинтиллометров и других инструментальных средств.

Дистанционное зондирование – это технология, базирующаяся на распознавании электромагнитных и силовых полей с целью получения и интерпретации геопространственных данных для выявления информации о характерных особенностях, объектах и классах на Земной поверхности, в океанах и атмосфере, а также (если это возможно) на других космических объектах.

Дистанционное зондирование связано с регистрацией и измерением фотонов различной энергии, исходящих из удаленных материалов, с целью обеспечения возможности идентификации и категоризации по классу/типу, веществу и пространственному распределению.

Дистанционное зондирование – получение информации об объекте по данным измерений, сделанных на расстоянии от объекта, т. е. без прямого контакта с объектом.

Понятие ДЗ появилось в XIX веке вслед за изобретением фотографии.
В одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, ДЗ начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Фактически ДЗ начало свой путь в 1840-х годах, когда пилоты воздушных шаров получили картинки земной поверхности, используя новейшее изобретение – фотокамеру.



4 октября 1957 года СССР осуществил вывод на орбиту первого искусственного спутника Земли – Спутник-1.

12 апреля 1961 года в 9 часов 7 минут по московскому времени с космодрома Байконур стартовал космический корабль “Восток” с пилотом-космонавтом Юрием Алексеевичем Гагариным на борту. Первый полет человека длился 108 минут – космонавт приземлился неподалеку от деревни Смеловки в Саратовской области.

Возможности ДЗ США в военной области были очень значительны и еще более возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON и LANYARD

Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач. Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 (Television and Infrared Observation Satellite).

Первый специализированный спутник для целей ДЗ был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat. Они предназначены для регулярной многозональной съемки территорий со средним разрешением.

Дистанционное зондирование включает использование инструментов, или сенсоров, для «захвата» спектральных и пространственных отношений между объектами и материалами, наблюдаемыми с расстояния – обычно, находясь над ними. Как правило, мы обозреваем наш мир с более или менее горизонтальной точки зрения, поскольку живем на его поверхности. Но, при этих условиях, то, что мы видим, ограничено областью в несколько квадратных километров по причине наличия различных препятствий – зданий, деревьев, складок местности. Видимая нами область значительно увеличивается, если мы смотрим вниз, например, с высокого здания или вершины горы. Она увеличивается еще больше – до сотен квадратных километров, если мы бросаем взгляд вниз с авиалайнера, летящего на высоте 10 километров. С вертикальной или значительно возвышенной перспективы, наши впечатления о поверхности под нами заметно отличается от того, когда мы осматриваем окружающий мир, находясь в некоторой точке этой поверхности. В этом случае мы наблюдаем множество объектов и особенностей на поверхности такими, какими бы они выглядели на тематической карте в их действительных пространственных и контекстных взаимосвязях. Именно поэтому дистанционное зондирование очень часто осуществляется с платформ, таких как самолеты или космические аппараты, имеющих бортовые датчики, регистрирующие и анализирующие с высоты объекты и особенности территории на больших площадях. Это практичный, упорядоченный и эффективный в отношении цены путь получения и обновления информации об окружающем нас мире.

Далее приведён краткий список космических аппаратов, которые использовались, а некоторые и используются, для ДЗ земной поверхности, океанов и наблюдения за погодой. В скобках указан год запуска первого из спутников серии.

Группа 1 – в основном наблюдения земной поверхности:

Landsat (1973); Seasat (1978); HCMM (1978); SPOT (France) (1986);

RESURS (Russia) (1985); IRS (India) (1986); ERS (1991); JERS (Japan) (1992); Radarsat (Canada) (1995); ADEOS (Japan) (1996). Современные: WorldView, EO-1, QuickBird, OrbView, Сич-2, EgypetSat, Ikonos, Terra, TerraSAR-X, TanDEM-X и др.

Группа 2 – в основном метеорологические наблюдения:

TIROS (1960); Nimbus (1964); ESSA (1966); ATS (g) (1966);

Российские Kosmos (1968) и Meteor (1969); ITOS (1970); SMS (g) (1975);

NOAA (1-5) (1976); Meteosat (1978); NOAA (6-14) (1982);

Группа 3 – в основном океанографические наблюдения:

Seasat (1978); Nimbus 7 (1978) включал CZCS (Coastal Zone Color Scanner), который измерял концентрацию хлорофилла в морской воде; Topex-Poseidon (1992); SeaWiFS (1997). Современные: Океан-О, Terra, Aqua.

Этот очень небольшой (перечислены одни из самых известных) и постоянно пополняющийся список убеждает в том, что дистанционное зондирование стало широко используемым технологическим и научным инструментом, используемым для мониторинга планетных поверхностей и атмосферы. Расходы на наблюдение Земли и других планет, начиная с первых дней космических программ по настоящее время, превысили 150 миллиардов долларов. Большая часть этих денег была направлена на практические приложения, в основном фокусирующиеся на управлении природными ресурсами и окружающей средой.

На данный момент сложно найти передовую отрасль, направление деятельности людей, где не применялись технологии ДЗ. Рассмотрим кратко основные области применения данных ДЗ.

Сельское, лесное и охотничье хозяйство . В данной области данные ДЗ применяют для различения типов вегетации и их состояния, оценки площадей посевов, лесных и охотничьих угодий по типам культур, определяют состояние почв и площади выгоревших участков.

Картография и землепользование . При решении различных задач землепользования с использованием данных ДЗ важнейшими являются классификация, картографирование и обновление карт, категоризация земель, разделение урбанизированных и сельских районов, региональное планирование, картирование транспортных сетей, картирование границ вода‑суша.

Геология . Это одна из первых областей, при изучении которой активно использовалась съемка с воздушных шаров, самолетов и, впоследствии, с космических платформ. Наиболее часто данные ДЗ используют в этой области для различения типов пород, картирования больших геологических образований, обновления геологических карт и поиска указаний на определенные минералы.

Водные ресурсы . При исследовании водных ресурсов с использованием данных ДЗ чаще всего специалисты определяют границы водных объектов, их площади и объемы, исследуют мутность и турбулентность, проводят картирование областей затопления и границ снежного покрова, динамику их изменения.

Океанография и морские ресурсы . При решении задач в этой области актуальными являются обнаружение живых морских организмов, исследование течений, картирование береговой линии, картирование отмелей и мелей, картирование льдов для целей судовождения, а также исследование морских волн.

Окружающая среда . Пожалуй, наиболее актуальными для использования данных ДЗ является именно эта область. Вопросы безопасности и мониторинга окружающей среды стоят перед современным человечеством наиболее остро. Данные ДЗ активно используются для мониторинга разработок полезных ископаемых, картирования и мониторинга загрязнения поверхностных вод, обнаружения атмосферного загрязнения, определения последствий стихийных бедствий и чрезвычайных ситуаций, а также мониторинга воздействия человеческой активности на окружающую среду в целом.

Таким образом, одними из наиболее распространенных задач в представленных областях, использующих данные ДЗ, являются задачи мониторинга и наблюдения за определенными территориями земной поверхности и атмосферы, обновление и составление карт, а также составление тематических карт и атласов .

Как известно топографические карты дают человеку представление об окружающем мире и позволяют легко ориентироваться даже на незнакомой местности. Однако топографические карты крупных масштабов, таких как 1:10 000 – 1:50 000, достаточно редко доступны простому потребителю, в то время, как с развитием сети Internet и картографического сервиса Google Earth, доступны космические изображения поверхности Земли с высоким пространственным разрешением. Это дает возможность не только использовать их для ориентировки на местности, но и помогает вносить коррективы в имеющиеся старые топографические карты. Городские службы, активно занимающиеся обновлением топографических карт населенных пунктов, наиболее заинтересованы в получении периодической съемки с высоким разрешением определенных участков земной поверхности.

В качестве первичного материала для топографических карт традиционно использовались аэрофотоснимки. Космические цифровые снимки открывают новые возможности: удешевление повторных съемок, увеличение площади охвата местности и снижение искажений, вызванных рельефом. Кроме того, упрощается генерализация изображения на мелкомасштабных картах: вместо трудоемкого упрощения крупномасштабных карт можно сразу использовать космические снимки среднего разрешения. Поэтому съемки из космоса используют все шире и в перспективе могут стать основным методом обновления топографических карт .

При выборе снимков для составления карт определенного масштаба учитывают графическую точность рисовки и печати карт (0,1 мм). Например, снимки должны иметь пространственное разрешение не хуже 100 м для карт масштаба 1:1 000 000 и не хуже 10 м для карт масштаба 1:100 000.

При обновлении карт наносятся лишь изменения контуров элементов, а при составлении карт необходимо определить точное положение этих элементов. Поэтому для составления топографических карт требуются снимки более высокого разрешения, чем для их обновления. Следует также учитывать, что при составлении и обновлении топографических карт определенного масштаба одни и те же типы космических снимков могут быть пригодны или непригодны для различных элементов содержания топографических карт .

На основе материалов издания в табл. 1.3 представлены рекомендуемые масштабы для составления и обновления топографических, обзорно-топографических и обзорных карт по космическим снимкам.

и пространственного разрешения для составления (С) и обновления (О) карт

Пр.* Масштаб
10 000 – 25 000 25 000 – 50 000 50 000 – 100 000 100 000 – 200 000 200 000 – 500 000 500 000 – 1 000 000 Мельче 1 000 000
250 – 1000 м С О
140 м О С О
35 – 45 м С О С О С О
30 м О С О С О
15 м О С О С О
10 м С О С О
5 м О С О
Выше 1 м С О С О

Пр.* – пространственное разрешение космической съемки

Космические снимки широко используются для обновления геологических, геоморфологических, гидрологических, океанологических, метеорологических, геоботанических, почвенных, ландшафтных карт. Для каждого типа тематических карт имеется своя методика их составления обновления по космическим снимкам, использующая в определенном сочетании рисунок снимка и значения яркости в каждой его точке (соответствующие спектральной отражательной способности поверхности, ее температуре или другим характеристикам, в зависимости от типа снимка). Использование космических снимков при составлении тематических карт способствует увеличению детальности карты и рисовке контуров, в большей мере соответствующих природному рисунку.

При тематическом картографировании требования к точности нанесения положения объекта обычно несколько ниже, чем для топографических карт. Поэтому по одним и тем же снимкам можно составлять тематические карты более крупного масштаба.

Следует отметить, что использование космических снимков, в сочетании с полевыми исследованиями, позволяет оперативно обновлять различные серии государственных карт, в том числе карты лесной таксации, карты почв, геоботанические карты.

Преимущества дистанционного зондирования

Дистанционным зондированием называют получение информации об объектах без вхождения с ними в физический контакт. Однако это определение является слишком широким.

Поэтому введем некоторые ограничения, позволяющие конкретизировать особенности понятия «дистанционное зондирование», и в частности, важного для обеспечения безопасности авиации понятия дистанционного зондирования атмосферы. Во-первых, предполагают, что информацию получают с помощью технических средств.

Во-вторых, речь идет об объектах, находящихся на значительных расстояниях от технических средств, что принципиально отличает ДЗ от других научно-технических направлений, таких как неразрушающий контроль материалов и изделий, медицинская диагностика и т. п. Добавим, что ДЗ использует косвенные методы измерения.

Дистанционное зондирование включает исследования атмосферы и земной поверхности, в последнее время развились и подповерхностные методы ДЗ. Применение методов и средств дистанционного неконтактного получения информации о состоянии и параметрах тропосферы способствует безопасности авиации.

Главные преимущества ДЗ - это высокая скорость получения данных о больших объемах атмосферы (или о больших площадях земной поверхности), а также возможность получения информации об объектах, практически недоступных для исследования другими способами. С традиционными метеорологическими измерениями в верхней атмосфере, выполняемыми с помощью шаров-зондов, широко и систематически применяются сложные методы ДЗ.

Дистанционное зондирование стоит довольно дорого, особенно космическое. Несмотря на это, сравнительный анализ затрат и получаемых результатов доказывает высокую экономическую эффективность зондирования. Кроме того, использование данных зондирования, в частности, метеорологических спутников, наземных и бортовых радиолокационных средств, сохранило тысячи человеческих жизней за счет предупреждения стихийных бедствий и избежания опасных метеорологических явлений. Поэтому научно-исследовательская. экспериментальная, конструкторская и оперативная деятельность в области ДЗ, которая интенсивно развивается в ведущих странах мира, является полностью оправданной.

Объекты и применение дистанционного зондирования

Основными объектами ДЗ являются:

    погода и климат (осадки, облака, ветер, турбулентность, излучения);

    элементы окружающей среды (аэрозоли, газы, электричество атмосферы, перенос, т. е. перераспределение в атмосфере той или иной субстанции);

    океаны и моря (морское волнение, течения, количество воды, лед);

    земная поверхность (растительность, геологические исследования, изучения ресурсов, высото-метрия).

Информация, получаемая средствами ДЗ, необходима для многих отраслей науки, техники и экономики. Количество потенциальных потребителей этой информации постоянно растет.

С целью обеспечения безопасности полетов ДЗ используется:

    метеорологией, климатологией и физикой атмосферы (оперативные данные для прогноза погоды, определения профиля температуры, давления и содержания водяного пара в атмосфере, измерения скорости ветра и т. п.);

    спутниковой навигацией, связью, в радиолокационных наблюдениях и радионавигации (эти области требуют данных об условиях распространения радиоволн, которые оперативно получаются средствами ДЗ);

    авиацией, например, прогноз метеоусловий в аэропортах и на авиатрассах, оперативное обнаружение опасных метеорологических явлений, таких как град, гроза, турбулентность, сдвиг ветра, микровзрыв и обледенение.

Кроме того, важными являются такие области, в которых летательные аппараты используются в качестве носителей средств ДЗ:

    гидрология, включая оценку и управление водными ресурсами, прогнозирование таяния снегов, предупреждения о паводках;

    аграрные области (прогноз и управление погодой, контроль типа, распространения и состояния растительного покрова, построение карт типов грунтов, определение влажности, предупреждение градобитий, прогноз урожая);

    экология (контроль загрязнения атмосферы и земной поверхности);

    океанография (например, измерение температуры морской поверхности, исследования океанических течений и спектров морского волнения);

    гляциология (например, отображение распространения и движения ледовых щитов и морского льда, определения возможности морского судоходства в ледовых условиях);

    геология, геоморфология и геодезия (например, идентификация типа горных пород, локализация геологических дефектов и аномалий, измерение

    параметров Земли и наблюдение тектонического движения);

    топография и картография (в частности, получение точных данных о высоте и привязке их к данной системе координат, производство карт и внесение изменений в них);

    контроль стихийных бедствий (в том числе контроль объема паводков, предупреждение о песчаных и пылевых бурях, лавинах, оползнях, определение маршрутов лавин и т. п.);

    планирование в других технических приложениях (например, инвентаризация землепользования и контроль изменений, оценка земельных ресурсов, наблюдение за движением транспорта);

    военные применения (контроль передвижения техники и воинских формирований, оценка местности).

Системы и методы дистанционного зондирования

Классификация систем ДЗ основывается на привычных для специалистов по радиолокации отличиях между активными и пассивными системами. Активные системы облучают исследуемую среду электромагнитным излучением (ЭМИ), которое обеспечивает система ДЗ, т. е. в этом случае средство ДЗ генерирует электромагнитную энергию и излучает ее в направлении исследуемого объекта. Пассивные системы воспринимают ЭМИ от исследуемого объекта естественным образом. Это может быть, как собственное ЭМИ, возникающее в самом объекте зондирования, например, тепловое излучение, так и рассеянное ЭМИ какого-либо естественного внешнего источника, например, солнечного излучения. Преимущества и недостатки каждого из двух указанных типов систем ДЗ (активные и пассивные) определяются рядом факторов. Например, пассивная система практически неприменима в тех случаях, когда отсутствует достаточно интенсивное собственное излучение исследуемых объектов в заданном диапазоне длин волн. С другой стороны, активная система становится технически невыполнимой, если излучаемая мощность, необходимая для получения достаточного отраженного сигнала, оказывается слишком большой.

В ряде случаев для получения необходимой информации желательно знать точные параметры излучаемого сигнала, чтобы обеспечить какие-то специальные возможности анализа, например, измерение доплеровского сдвига частоты отраженного сигнала для оценки движения цели по отношению датчика (приемника) или изменения поляризации отраженного сигнала относительно зондирующего сигнала. Как и любые информационно-измерительные системы, которые используют ЭМИ, системы ДЗ различаются по диапазонам частот электромагнитных колебаний, например, ультрафиолетовые, видимого света, инфракрасные, миллиметровые, сантиметровые, дециметровые.

Рассмотрим ДЗ атмосферы, в частности, тропосферы - той части земной атмосферы, которая непосредственно прилегает к поверхности Земли. Тропосфера простирается до высот 10-15 км, а в тропических широтах - до 18 км. Использование ДЗ с целью метеорологического обеспечения безопасности полетов требует внимания к системам, которые рассматривают атмосферу как трехмерный, объемно распределенный объект, и позволяют получать профили атмосферы в разных направлениях зондирования.

Объектами зондирования, или целями, могут быть флюктуации, которые естественно происходят в атмосфере, а также фиксированные объекты на определенном расстоянии от средства ДЗ. Важно понять суть разных видов взаимодействия между ЭМИ и атмосферой. Разные виды такого взаимодействия - это удобный способ классификации методов ДЗ. Они основываются на затухании, рассеянии и излучении электромагнитных колебаний объектами зондирования. Схемы основных процессов взаимодействия электромагнитных колебаний с атмосферными неоднородностями применительно к задачам ДЗ.

В первом случае излучение от заданного известного источника (передатчика) поступает на вход приемника после того, как оно прошло через исследуемый объект. Оценивается величина ослабления излучения на трассе распространения от передатчика к приемнику, при этом предполагается, что величина потерь электромагнитной энергии при прохождении через объект связана со свойствами этого объекта. Причиной потерь может быть поглощение или комбинация поглощения и рассеяния, что лежит в основе получения информации об объекте. Много методов ДЗ по сути основаны на таком подходе.

Во втором случае, когда источник сам является источником излучения, обычно возникает задача измерения инфракрасной или/и микроволновой эмиссии, что используется для получения информации о тепловой структуре атмосферы и других ее свойствах. Кроме того, такой подход характерен для исследования молниевого разряда на основе его собственного радиоизлучения и для обнаружения грозы на больших расстояниях.

Третий случай состоит в использовании рассеяния электромагнитных колебаний атмосферным образованием для получения информации о нем. На свойстве рассеяния основаны различные способы ДЗ. Один из них характеризуется тем, что исследуемая среда освещается каким-то источником некогерентного излучения, например, солнечным светом или инфракрасным излучением, которое исходит от поверхности Земли, а датчик средства ДЗ принимает рассеянное объектом излучение. Другой - тем, что объект облучается специальным искусственным (когерентным или некогерентным) источником, например, лазером или источником с длиной волны от дециметров до миллиметров (как в случае радиолокатора). Это излучение рассеивается объектом, обнаруживается приемником и используется для извлечения информации о рассеивающем объекте.

Заметим, что первый из рассмотренных случаев соответствует активной системе зондирования, второй - пассивной, а третий реализуется как в пассивном, так и в активном вариантах.

Активная система ДЗ может быть моно-статической, когда передатчик и приемник средства ДЗ размещаются на одной позиции, бистатической, или даже мульти-статической, когда система состоит из одного или нескольких передатчиков и нескольких приемников, расположенных в разных позициях.

Классификация не будет достаточно полной, если не указать основные технические средства ДЗ: радиолокаторы, радиометры, лидеры и другие устройства или системы, используемые в качестве датчиков ДЗ.

Изучение атмосферы с помощью ДЗ включает использования приборов, устанавливаемых на искусственных спутниках Земли и орбитальных станциях, самолетах, ракетах, воздушных шарах, а также средствами, размещенными на земле. Чаще всего носителями средств ДЗ являются спутники, самолеты и платформы наземного базирования.

Обратные задачи

Задачи ДЗ - это обратные задачи, т. е. такие, при решении которых вынуждены идти от результата к причине. К ним относятся все задачи обработки и интерпретации данных наблюдений. Теория обратных задач - самостоятельная математическая дисциплина, а ДЗ атмосферы - лишь одно из научно-технических направлений, для которых теория обратных задач является важной. В прикладном аспекте необходимо хорошо понимать, как ЭМИ взаимодействует с исследуемыми атмосферными объектами, формируя сигналы, которые используются для получения информации об атмосфере. В идеальном случае между измеренным параметром сигнала и оцениваемой характеристикой атмосферы существует взаимно однозначное соответствие. Но в реальных ситуациях всегда возникают характерные для обратных задач проблемы.

Рассмотрим простой пример, который относится к пассивному зондированию атмосферы. Предположим, что поглощающий газ в атмосфере характеризуется собственным излучением, зависящим от температуры газа. Это излучение воспринимается датчиком, расположенным на спутнике. Предположим также, что существует связь между длиной волны излучения и температурой, а температура зависит от высоты слоя атмосферы. Тогда знание взаимосвязи между интенсивностью излучения, длиной волны излучения и температурой газа дает способ оценки температуры атмосферного газа как функции длины волны и, следовательно, высоты. На самом деле ситуация намного сложнее по сравнению с описанным идеальным случаем. Излучение на заданной длине волны не исходит из одного слоя на соответствующей высоте, а распределено по толще атмосферы, поэтому нет взаимно однозначного соответствия между длиной волны и высотой, как это предполагалось для идеального случая, что вызывает размытость этой связи. Этот пример является типичным для многих обратных задач, где границы интегрирования зависят от особенностей конкретной задачи. Это уравнение известно, как интегральное уравнение Фредгольма первого рода. Оно характеризуется тем, что границы интеграла фиксированные, появляется только в подынтегральном выражении. Функция называется ядром или функцией ядра уравнения.

Разные задачи ДЗ сводятся к уравнению или к подобным уравнениям. Для решения таких задач необходимо выполнить обратное преобразование, чтобы по результатам измерений g. получить распределение. Такие обратные задачи называются некорректными, или некорректно поставленными задачами. Их решение ассоциировано с преодолением трех следующих трудностей. В принципе решение некорректной задачи может оказаться математически несуществующим, неоднозначным или неустойчивым. Отсутствие решения

С точки зрения ДЗ, опасные метеорологические явления (ОМЯ) можно рассматривать как объемно распределенные объекты, которые занимают определенные пространственные зоны в облачности или в безоблачной атмосфере (ясном небе). Физические признаки внешнего проявления ОМЯ, как правило, описываются параметрами, характеризующими интенсивность ОМЯ и которые в принципе можно измерять, например, параметры скорости ветра, напряженности электрического и магнитного полей, интенсивность осадков. Физические параметры ОМЯ рассмотрены.

Районы атмосферы, в которых параметры, характеризующие интенсивность ОМЯ, превышают некоторый заданный уровень, называются зонами ОМЯ. Процесс обнаружения ОМЯ и отнесение их зон к определенным пространственным координатам в заданное время на основании результатов ДЗ называется локализацией зон ОМЯ.

Таким образом, в процессе локализации средствами микроволнового ДЗ атмосферы обнаруживают зоны ОМЯ и определяют их местоположение в заданной системе координат. В ряде случаев можно оценить также степень интенсивности ОМЯ.

Локализация опасных для полетов зон бортовыми радиолокационными средствами - это оперативное обнаружение и определение местоположения с помощью метео-навигационных радиолокаторов (МНРЛС) и других боровых устройств, которые могут быть сопряжены с МНРЛС.

сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин «дистанционное зондирование» обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований. См. также СПУТНИК СВЯЗИ; ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ.

Бурша М. Основы космической геодезии . М., 1971–1975
Дистанционное зондирование в метеорологии, океанологии и гидрологии . М., 1984
Зейболд Е., Бергер В. Дно океана . М., 1984
Мишев Д. Дистанционные исследования Земли из космоса . М., 1985

Найти "ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ " на

Дистанционное зондирование Земли (ДЗЗ) – наблюдение поверхности Земли авиационными и космическими средствами, оснащёнными различными видами съемочной аппаратуры. Рабочий диапазон длин волн, принимаемых съёмочной аппаратурой, составляет от долей микрометра (видимое оптическое излучение) до метров (радиоволны). Методы зондирования могут быть пассивные , то есть использовать естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной активностью, и активные – использующие вынужденное излучение объектов, инициированное искусственным источником направленного действия. Данные ДЗЗ, полученные с КА, характеризуются большой степенью зависимости от прозрачности атмосферы. Поэтому на КА используется многоканальное оборудование пассивного и активного типов, регистрирующие электромагнитное излучение в различных диапазонах.

Аппаратура ДЗЗ первых КА, запущенных в 1960-70-х гг. была трассового типа – проекция области измерений на поверхность Земли представляла собой линию. Позднее появилась и широко распространилась аппаратура ДЗЗ панорамного типа – сканеры, проекция области измерений на поверхность Земли которых представляет собой полосу.

Космические аппараты дистанционного зондирования Земли используются для изучения природных ресурсов Земли и решения задач метеорологии. КА для исследования природных ресурсов оснащаются в основном оптической или радиолокационной аппаратурой. Преимущества последней заключаются в том, что она позволяет наблюдать поверхность Земли в любое время суток, независимо от состояния атмосферы.

Обработка данных

Качество данных, получаемых в результате дистанционного зондирования, зависит от их пространственного, спектрального, радиометрического и временного разрешения.

Пространственное разрешение. Характеризуется размером пикселя (на поверхности Земли), записываемого в растровую картинку – может варьироваться от 1 до 1000 м.

Спектральное разрешение. Данные Landsat включают семь полос, в том числе инфракрасного спектра, в пределах от 0.07 до 2.1 мкм. Сенсор Hyperion аппарата Earth Observing-1 способен регистрировать 220 спектральных полос от 0.4 до 2.5 мкм, со спектральным разрешением от 0.1 до 0.11 мкм.

Радиометрическое разрешение. Число уровней сигнала, которые сенсор может регистрировать. Обычно варьируется от 8 до 14 бит, что дает от 256 до 16 384 уровней. Эта характеристика также зависит от уровня шума в инструменте.

Временное разрешение. Частота пролета спутника над интересующей областью поверхности. Имеет значение при исследовании серий изображений, например при изучении динамики лесов. Первоначально анализ серий проводился для нужд военной разведки, в частности для отслеживания изменений в инфраструктуре, передвижений противника.

Для создания точных карт на основе данных дистанционного зондирования, необходима трансформация, устраняющая геометрические искажения. Снимок поверхности Земли аппаратом, направленным точно вниз, содержит неискаженную картинку только в центре снимка. При смещении к краям расстояния между точками на снимке и соответствующие расстояния на Земле все более различаются. Коррекция таких искажений производится в процессе фотограмметрии. С начала 1990-х большинство коммерческих спутниковых изображений продается уже скорректированными.

Кроме того, может требоваться радиометрическая или атмосферная коррекция. Радиометрическая коррекция преобразует дискретные уровни сигнала, например от 0 до 255, в их истинные физические значения. Атмосферная коррекция устраняет спектральные искажения, внесенные наличием атмосферы.

В рамках программы NASA Earth Observing System были сформулированы уровни обработки данных дистанционного зондирования:

Уровень Описание
Данные, поступающие непосредственно от устройства, без служебных данных (синхронизационные фреймы, заголовки, повторы).
1a Реконструированные данные устройства, снабженные маркерами времени, радиометрическими коэффициентами, эфемеридами (орбитальными координатами) спутника.
1b Данные уровня 1a, преобразованные в физические единицы измерения.
Производные геофизические переменные (высота океанических волн, влажность почвы, концентрация льда) с тем же разрешением, как у данных уровня 1.
Переменные, отображенные в универсальной пространственно-временной шкале, возможно дополненные интерполяцией.
Данные, полученные в результате расчетов на основе предыдущих уровней.

Рис. 9. . Электромагнитный спектр его деление с указанием длин волн, устанавливаемых различными приборами

Системы дистанционного зондирования. В системе такого типа имеются три основных компонента: устройство для формирования изображения, среда для регистрации данных и база для проведения зондирования. В качестве простого примера такой системы можно привести фотографа-любителя (база), использующего для съемки реки 35-мм фотоаппарат (прибор-визуализатор, формирующий изображение), который заряжен высокочувствительной фотопленкой (регистрирующая среда). Фотограф находится на некотором расстоянии от реки, однако регистрирует информацию о ней и затем сохраняет ее на фотопленке.

Устройства формирования изображений, регистрирующая среда и база. Приборы, формирующие изображения, делятся на четыре основные категории: фото- и кинокамеры, многоспектральные сканеры, радиометры и активные радиолокаторы. Современные однообъективные зеркальные фотокамеры создают изображение, фокусируя ультрафиолетовое, видимое или инфракрасное излучение, приходящее от объекта, на фотопленке. После проявления пленки получается постоянное (способное сохраняться длительное время) изображение. Видеокамера позволяет получать изображение на экране; постоянной записью в этом случае будет соответствующая запись на видеоленте или фотоснимок, сделанный с экрана. Во всех других системах визуализации изображений используются детекторы или приемники, обладающие чувствительностью на определенных длинах волн спектра. Фотоэлектронные умножители и полупроводниковые фотоприемники, используемые в сочетании с оптико-механическими сканерами, позволяют регистрировать энергию ультрафиолетового, видимого, а также ближнего, среднего и дальнего ИК-участков спектра и преобразовывать ее в сигналы, которые могут давать изображения на пленке. Энергия микроволн (диапазон сверхвысоких частот, СВЧ) подобным же образом трансформируется радиометрами или радиолокаторами. В сонарах для получения изображений на фотопленке используется энергия звуковых волн.

Приборы, используемые для визуализации изображений, размещают на различных базах, в том числе на земле, судах, самолетах, воздушных шарах и космических летательных аппаратах. Специальные камеры и телевизионные системы повседневно используются для съемки представляющих интерес физических и биологических объектов на земле, на море, в атмосфере и космосе. Специальные камеры замедленной киносъемки применяются для регистрации таких изменений земной поверхности, как эрозия морских берегов, движение ледников и эволюция растительности.

Архивы данных. Фотоснимки и изображения, сделанные в рамках программ аэрокосмической съемки, надлежащим образом обрабатываются и сохраняются. В США и России архивы для таких информационных данных создаются правительствами. Один из основных архивов такого рода в США, EROS (Earth Resources Obsevation Systems) Data Center, подчиненный Министерству внутренних дел, хранит около 5 млн. аэрофотоснимков и около 2 млн. изображений, полученных со спутников «Лендсат», а также копии всех аэрофотоснимков и космических снимков поверхности Земли, хранящихся в НАСА. К этой информации имеется открытый доступ. Обширные фотоархивы и архивы других изоматериалов имеются у различных военных и разведывательных организаций.

Анализ изображений. Самая важная часть дистанционного зондирования - анализ изображений. Такой анализ может выполняться визуально, визуальными методами, усиленными применением компьютера, и целиком и полностью компьютером; последние два включают в себя анализ данных в цифровой форме. Первоначально большинство работ по анализу данных, полученных дистанционным зондированием, выполнялось визуальным исследованием индивидуальных аэрофотоснимков или путем использования стереоскопа и наложения фотоснимков с целью создания стереомодели. Фотоснимки были обычно черно-белыми и цветными, иногда черно-белыми и цветными в ИК-лучах или - в редких случаях - многозональными. Основные пользователи данных, получаемых при аэрофотосъемке, - это геологи, географы, лесоводы, агрономы и, конечно, картографы. Исследователь анализирует аэрофотоснимок в лаборатории, чтобы непосредственно извлечь из него полезную информацию, нанести ее затем на одну из базовых карт и определить области, в которых надо будет побывать во время полевых работ. После проведения полевых работ исследователь еще раз оценивает аэрофотоснимки и использует полученные из них и в результате полевых съемок данные для окончательного варианта карты. Такими методами подготавливают к выпуску множество разных тематических карт: геологических, карт землепользования и топографических, карт лесов, почв и посевов. Геологи и другие ученые ведут лабораторные и полевые исследования спектральных характеристик различных природных и цивилизационных изменений, происходящих на Земле. Идеи таких исследований нашли применение в конструкции многоспектральных сканеров MSS (Multi-Spectral-Scanners), которые используются на самолетах и КА. Искусственные спутники Земли «Лендсат-1, -2 и -4» (Landsat -1, -2 и -4) имели на борту MSS с четырьмя спектральными полосами: от 0,5 до 0,6 мкм (зеленая); от 0,6 до 0,7 мкм (красная); от 0,7 до 0,8 мкм (ближняя ИК); от 0,8 до 1,1 мкм (ИК). На спутнике «Лендсат-3» используется, кроме того, полоса от 10,4 до 12,5 мкм. Стандартные составные изображения с применением метода искусственного окрашивания получаются при комбинированном использовании MSS с первой, второй и четвертой полосами в сочетании с синим, зеленым и красным фильтрами соответственно. На спутнике «Лендсат-4» c усовершенствованным сканером MSS тематический картопостроитель позволяет получать изображения в семи спектральных полосах: трех – в области видимого излучения, одной – в ближней ИК-области, двух – в средней ИК-области и одной – в тепловой ИК-области. Благодаря этому прибору пространственное разрешение было улучшено почти втрое (до 30 м) по сравнению с тем, что давал спутник «Лендсат», на котором использовался только сканер MSS. Поскольку чувствительные датчики спутников не предназначались для стереоскопической съемки, дифференцировать те или иные особенности и явления в пределах одного конкретного изображения пришлось, используя спектральные различия. Сканеры MSS позволяют различать пять широких категорий земных поверхностей: вода, снег и лед, растительность, обнаженная порода и почва, а также объекты, связанные с деятельностью человека. Научный работник, хорошо знакомый с исследуемой областью, может выполнить анализ изображения, полученного в одной широкой полосе спектра, каким, например, является черно-белый аэрофотоснимок, который в типичном случае получается при регистрации излучений с длинами волн от 0,5 до 0,7 мкм (зеленая и красная области спектра). Однако с увеличением числа новых спектральных полос глазам человека становится все труднее проводить различия между важными особенностями похожих тонов в различных участках спектра. Так, например, только один съемочный план, снятый со спутника «Лендсат» с помощью MSS в полосе 0,5-0,6 мкм, содержит около 7,5 млн. пикселов (элементов изображения), у каждого из которых может быть до 128 оттенков серого в пределах от 0 (черный цвет) до 128 (белый цвет). При сравнении двух изображений одной и той же области, сделанных со спутника «Лендсат», приходится иметь дело с 60 млн. пикселов; одно изображение, полученное с «Лендсат-4» и обработанное картопостроителем, содержит около 227 млн. пикселов. Отсюда с очевидностью следует, что для анализа таких изображений необходимо использовать компьютеры.

Цифровая обработка изображений. При анализе изображений компьютеры используются для сравнения значений шкалы серого (диапазона дискретных чисел) каждого пиксела снимков, сделанных в один и тот же день либо в несколько разных дней. Системы анализа изображений выполняют классификацию специфических особенностей съемочного плана в целях составления тематической карты местности. Современные системы воспроизведения изображений позволяют воспроизводить на цветном телевизионном мониторе одну или несколько спектральных полос, отработанных спутником со сканером MSS. Подвижный курсор устанавливают при этом на один из пикселов или на матрицу пикселов, находящихся в пределах некоторой конкретной особенности, например водоема. Компьютер выполняет корреляцию всех четырех MSS-полос и классифицирует все другие части изображения, полученного со спутника, которые характеризуются аналогичными наборами цифровых чисел. Исследователь может затем пометить цветным кодом участки «воды» на цветном мониторе, чтобы составить «карту», показывающую все водоемы на спутниковом снимке. Эта процедура, известная под названием регулируемой классификации, позволяет систематически классифицировать все части анализируемого снимка. Имеется возможность идентификации всех основных типов земной поверхности. Описанные схемы классификации с помощью компьютера довольно просты, однако окружающий нас мир сложен. Вода, например, совсем не обязательно имеет единственную спектральную характеристику. В пределах одного съемочного плана водоемы могут быть чистыми или грязными, глубокими или мелкими, частично покрытыми водорослями или замерзшими, и каждый из них обладает собственной спектральной отражательной способностью (а значит, и своей цифровой характеристикой). В системе интерактивного анализа цифрового изображения IDIMS используется схема нерегулируемой классификации. IDIMS автоматически помещает каждый пиксел в один из нескольких десятков классов. После компьютерной классификации сходные классы (например, пять или шесть водных классов) могут быть собраны в один. Однако многие участки земной поверхности имеют довольно сложные спектры, что затрудняет однозначное установление различий между ними. Дубовая роща, например, может оказаться на изображениях, полученных со спутника, спектрально неотличимой от кленовой рощи, хотя на земле эта задача решается очень просто. По спектральным же характеристикам дуб и клен относятся к широколиственным породам. Компьютерная обработка алгоритмами идентификации содержания изображения позволяет заметно улучшить MSS-изображение по сравнению со стандартным.

Примечание. Данные дистанционного зондирования служат основным источником информации при подготовке карт землепользования и топографических карт. Метеорологические и геодезические спутники NOAA и GOES используются для наблюдения за изменением облачности и развитием циклонов, в том числе таких, как ураганы и тайфуны. Изображения, получаемые со спутников NOAA, используются также для картирования сезонных изменений снегового покрова в северном полушарии в целях климатических исследований и изучения изменений морских течений, знание которых позволяет сократить продолжительность морских перевозок. Микроволновые приборы на спутниках «Нимбус» используются для картирования сезонных изменений в состоянии ледового покрова в морях Арктики и Антарктики.

Данные ДЗЗ с самолетов и искусственных спутников во все более широких масштабах используются для наблюдения за природными пастбищами. Аэрофотоснимки очень эффективны в лесоводстве благодаря достигаемому на них высокому разрешению, а также точному измерению растительного покрова и его изменения со временем.

Инфракрасная аэротермография из космоса позволяет различить области локальных течений Гольфстрима.

И все же именно в геологических науках ДЗЗ получило наиболее широкое применение. Данные дистанционного зондирования используются при составлении геологических карт с указанием типов пород, а также структурных и тектонических особенностей местности. В экономической геологии дистанционное зондирование служит ценным инструментом для поиска месторождений полезных ископаемых и источников геотермальной энергии. Инженерная геология пользуется данными дистанционного зондирования для выбора мест строительства, отвечающих заданным требованиям, определения мест залегания строительных материалов, контроля за проведением горных работ с поверхности и за рекультивацией земель, а также для проведения инженерных работ в приморской зоне. Кроме того, эти данные используются при оценках сейсмической, вулканической, гляциологической и других опасностей геологического происхождения, а также в таких ситуациях, как лесные пожары и промышленные аварии.

Данные, полученные дистанционным зондированием, составляют важную часть исследований в гляциологии (имеющих отношение к характеристикам ледников и снегового покрова), в геоморфологии (формы и характеристики рельефа), в морской геологии (морфология дна морей и океанов), в геоботанике (ввиду зависимости растительности от лежащих под ней месторождений полезных ископаемых) и в археологической геологии . В астрогеологии данные дистанционного зондирования имеют первостепенное значение для изучения других планет и лун Солнечной системы, а также в сравнительной планетологии для изучения истории Земли. Однако наиболее захватывающий аспект дистанционного зондирования состоит в том, что спутники, выведенные на околоземные орбиты, впервые предоставили ученым возможность наблюдать, отслеживать и изучать нашу планету как целостную систему, включая ее динамичную атмосферу и облик суши, изменяющийся под влиянием природных факторов и деятельности человека. Изображения, получаемые со спутников, возможно, помогут найти ключ к предсказанию изменений климата, вызванных в том числе естественными и техногенными факторами. Хотя США и Россия с 1960-х гг. ведут дистанционное зондирование, другие страны также вносят свой вклад. Японское и Европейское космические агентства планируют вывести на околоземные орбиты большое число спутников, предназначенных для исследования суши, морей и атмосферы Земли.

Первый советский спутник «Зенит-2» был создан в ОКБ-1. С 1965 по 1982 год на базе спутника «Зенит» в ЦСКБ-Прогресс было создано семь модификаций спутников дистанционного зондирования Земли. Всего к настоящему времени в ЦСКБ-Прогресс создано 26 типов автоматических КА для наблюдения земной поверхности, решающих весь спектр задач в интересах национальной безопасности, науки и народного хозяйства.

С 1988 по 1999 год произведено 19 успешных запусков космических аппаратов «Ресурс-Ф1» и «Ресурс-Ф1М». С 1987 по 1995 год произведено 9 успешных запусков КА «Ресурс-Ф2».

Космический комплекс «Ресурс-Ф2» предназначен для проведения многозонального и спектрозонального фотографирования поверхности Земли в видимом и ближнем инфракрасном диапазонах спектра электромагнитного излучения с высокими геометрическими и фотометрическими характеристиками в интересах различных отраслей народного хозяйства и наук о Земле.

Космический комплекс «Ресурс-ДК» – уникальная разработка ЦСКБ-Прогресс, сочетающая в себе испытанные временем технические решения и передовые достижения конструкторской мысли. Космический комплекс «Ресурс-ДК» обеспечивает многозональное дистанционное зондирование земной поверхности и оперативную доставку высокоинформативных изображений по радиоканалу на Землю.

В ноябре 2010 г. из строя вышел ряд систем «Ресурса-ДК», после чего аппарат уже не мог быть использован по назначению.

«Ресурс-П» призван заменить старый спутник «Ресурс-ДК».

Уникальность нового аппарата зондирования Земли «Ресурс-П» – в наборе сканеров – на нем будет установлено четыре-пять съемочных систем. Это позволит получать информацию с Земли не в трех цветах, как сейчас, а в полной цветовой гамме и ближнем инфракрасном диапазоне.

Новый комплекс спутник будет точнее и оперативнее своего предшественника. По замыслу разработчиков, «Ресурс-П» позволит изучать эволюцию климата, получать космические данные о крупномасштабных процессах в атмосфере и на поверхности Земли, вести мониторинг чрезвычайных ситуаций, прогнозировать землетрясения, оповещать о цунами, пожарах, разливах нефтепродуктов и многое другое.

Рис. Ресурс-ДК

«Космос-1076» - первый советский специализированный океанографический спутник. Это один из двух спутников, участвовавших в эксперименте «Океан-Э» (второй - «Космос-1151»). Оба сделаны на базе космического аппарата типа АУОС-3. Главные конструкторы:В.М.Ковтуненко, Б.Е.Хмыров, С.Н.Конюхов, В.И.Драновский. Данные, полученные спутником позволили создать первую советскую базу космических данных о Мировом океане:18 Спутник оснащался аппаратурой дистанционного зондирования Земли (ДЗЗ) трассового типа.

КБ «Южное»

океанографические исследования

Ракета-носитель

11К68 («Циклон-3»)

Стартовая площадка

Плесецк, стартовый комплекс №32/2

Сход с орбиты

Технические характеристики

Элементы орбиты

Тип орбиты

Приполярная

Наклонение

Период обращения

Апоцентр

Перицентр

Монитор - серия малых космических аппаратов дистанционного зондирования Земли созданная в ГКНПЦ им. М. В. Хруничева на базе унифицированной космической платформы «Яхта». Предполагалось что серия будет состоять из спутников «Монитор-Э», «Монитор-И», «Монитор-С», «Монитор-О» оснащенных различной оптико-электронной аппаратурой и «Монитор-Р» оснащенного радиолокационными системами". На настоящий момент в федеральной космической программе спутники серии "Монитор" отсутствуют.

Монитор-Э

Первый из спутников серии - Монитор-Э (экспериментальный) предназначен для отработки новой целевой аппаратуры и служебных систем платформы «Яхта». На спутнике весом 750 кг установлены две камеры с разрешением 8 м в панхроматическом режиме (один канал) и 20 м в многоканальном режиме (3 канала). Снимки «Монитора-Э» будут покрывать территорию размерами 90 на 90 км и 160 на 160 км. Объём бортовой памяти 50 гигабайт (2×25). Спутник разработан в негерметичном исполнении, по модульному принципу, что позволяет при необходимости расширять возможности КА за счет дополнительной аппаратуры. Целевая аппаратура способна обеспечить передачу информации в масштабе времени, близком к реальному. Спутник оснащен электрореактивной двигательной установкой (ЭРДУ), в качестве рабочего тела ЭРДУ используется ксенон. Предполагаемый срок активного существования аппарата составляет 5 лет.

«Монитор-Э» был запущен 26 августа 2005 года с космодрома Плесецк с использованием ракеты-носителя Рокот. Спутник был выведен на солнечно-синхронную орбиту высотой 550 км. После выхода на орбиту связь с аппаратом установить не удалось из-за отказа наземного оборудования радиолинии управления бортовой аппаратурой. Удалось наладить связь со спутником только через сутки. Однако уже 18 октября на аппарате возникли серьезные проблемы, связанные с его управлением, после чего он вошел в неориентированный режим. Это произошло из-за временного отказа одного из каналов гироскопического измерителя вектора угловой скорости (ГИВУС). Вскоре эту проблему удалось решить и уже 23 ноября 2005 года была проведена проверка работоспособности радиолиний передачи изображений с борта КА. 26 ноября 2005 года были получены первые изображения земной поверхности с камеры разрешением 20 метров, а 30 ноября была опробована камера разрешением 8 метров. Таким образом, можно утверждать, что работа космического аппарата «Монитор-Э» полностью восстановлена.

В 2011 году эксплуатация КА приостановлена.

Программа «Лендсат» – наиболее продолжительный проект по получению спутниковых фотоснимков планеты Земля. Первый из спутников в рамках программы был запущен в 1972; последний, на настоящий момент, «Лендсат-7» – 15 апреля 1999. Оборудование, установленное на спутниках «Лендсат» сделало миллиарды снимков. Снимки, полученные в США и на станциях получения данных со спутников по всему миру, являются уникальным ресурсом для проведения множества научных исследований в области сельского хозяйства, картографии, геологии, Лесоводства, разведки, образования и национальной безопасности. К примеру, «Лендсат-7» поставляет снимки в 8 спектральных диапазонах с пространственным разрешением от 15 до 60 м на точку; периодичность сбора данных для всей планеты изначально составляла 16 сут.

В 1969 г., в год полёта человека на Луну, в исследовательском центре Hughes Santa Barbara начали разработку и производство первых трех мультиспектральных сканеров (MSS). Первые прототипы MSS были изготовлены в течение 9 месяцев, к осени 1970, после чего они были протестированы на гранитном куполе Хаф-Доум в национальном парке Йосемити.

Изначальная оптическая схема MSS создана Jim Kodak, инженером по разработке опто-механических систем, который также спроектировал оптическую камеру КА программы Пионер, ставшую первым оптическим прибором, покинувшем Солнечную систему.

В момент создания в 1966 г. программа называлась Earth Resources Observation Satellites (Спутники наблюдения за ресурсами Земли), но в 1975 программу переименовали. В 1979 г., Президентской Директивой № 54, президент США Джимми Картер передал управление программой из NASA в NOAA, рекомендовав разработку долговременной системы с 4 дополнительными спутниками после «Лендсат-3», а также передачу программы в частный сектор. Это произошло в 1985, когда группа из Earth Observation Satellite Company (EOSAT), Hughes Aircraft и RCA, были выбраны NOAA для управления системой «Лендсат» в рамках десятилетнего контракта. EOSAT управляла «Лендсат-4 и -5», имела эксклюзивные права на продажу данных, полученный в программе и построила «Лендсат-6 и -7».

Спутниковая фотография Калькутты в симулированных цветах (simulated-color). Снято спутником NASA «Лендсат-7».

В 1989, когда передача программы еще не была окончательно завершена, у NOAA были исчерпаны бюджетные фонды для программы Landsat (NOAA не запрашивала финансирования, и конгресс США выделил финансирование лишь на половину финансового года) и NOAA решило закрыть «Лендсат-4 и -5». Глава нового Национального Космического комитета (National Space Council, вице-президент Джеймс Куэйл, обратил внимание на сложившуюся ситуацию и помог программе получить внеочередное финансирование.

В 1990 и 1991 годах конгресс снова предоставлял NOAA финансирование лишь на половину года, требуя, чтобы другие агентства, использующие данные собранные в программе «Лендсат», предоставили оставшуюся половину необходимых денег. В 1992, принимались усилия восстановить финансирование, однако к концу года EOSAT прекратил обработку данных «Лендсат». «Лендсат-6» был запущен 5 октября 1993, но потерян в результате аварии. Обработка данных от «Лендсат-4 и -5» была возобновлена EOSAT в 1994. «Лендсат-7» был запущен NASA 15 апреля 1999.

Важность программы «Лендсат» была признана конгрессом в октябре 1992, при принятии закона Land Remote Sensing Policy Act (Public Law 102-555), позволившего продолжить работу «Лендсат-7», и гарантирующего доступность данных и изображений с «Лендсат» по наиболее низким ценам, как текущим, так и новым пользователям.

Хронология запусков

«Лендсат-1» (изначально ERTS-1, Earth Resources Technology Satellite -1) - запущен 23 июля 1972, прекратил работу 6 января 1978

«Лендсат-7» - запущен 15 апреля 1999, функционирует. С мая 2003 произошел сбой модуля Scan Line Corrector (SLC). С сентября 2003 используется в режиме без коррекции линий сканирования, что уменьшает количество получаемой информации до 75 % от изначальной.

Технические детали

Следующим спутником в рамках программы должен стать Landsat Data Continuity Mission. Запуск запланирован на 2012 г. Новый спутник строится в Аризоне фирмой Orbital Sciences Corporation.

ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ
сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин "дистанционное зондирование" обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований.
См. также
СПУТНИК СВЯЗИ ;
ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ .

ТЕХНИКА И ТЕХНОЛОГИЯ
Дистанционное зондирование охватывает теоретические исследования, лабораторные работы, полевые наблюдения и сбор данных с борта самолетов и искусственных спутников Земли. Теоретические, лабораторные и полевые методы важны также для получения информации о Солнечной системе, и когда-нибудь их начнут использовать для изучения других планетных систем Галактики. Некоторые наиболее развитые страны регулярно запускают искусственные спутники для сканирования поверхности Земли и межпланетные космические станции для исследований дальнего космоса.
См. также
ОБСЕРВАТОРИЯ ;
СОЛНЕЧНАЯ СИСТЕМА ;
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ ;
КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ .
Системы дистанционного зондирования. В системе такого типа имеются три основных компонента: устройство для формирования изображения, среда для регистрации данных и база для проведения зондирования. В качестве простого примера такой системы можно привести фотографа-любителя (база), использующего для съемки реки 35-мм фотоаппарат (прибор-визуализатор, формирующий изображение), который заряжен высокочувствительной фотопленкой (регистрирующая среда). Фотограф находится на некотором расстоянии от реки, однако регистрирует информацию о ней и затем сохраняет ее на фотопленке.
Устройства формирования изображений, регистрирующая среда и база. Приборы, формирующие изображения, делятся на четыре основные категории: фото- и кинокамеры, многоспектральные сканеры, радиометры и активные радиолокаторы. Современные однообъективные зеркальные фотокамеры создают изображение, фокусируя ультрафиолетовое, видимое или инфракрасное излучение, приходящее от объекта, на фотопленке. После проявления пленки получается постоянное (способное сохраняться длительное время) изображение. Видеокамера позволяет получать изображение на экране; постоянной записью в этом случае будет соответствующая запись на видеоленте или фотоснимок, сделанный с экрана. Во всех других системах визуализации изображений используются детекторы или приемники, обладающие чувствительностью на определенных длинах волн спектра. Фотоэлектронные умножители и полупроводниковые фотоприемники, используемые в сочетании с оптико-механическими сканерами, позволяют регистрировать энергию ультрафиолетового, видимого, а также ближнего, среднего и дальнего ИК-участков спектра и преобразовывать ее в сигналы, которые могут давать изображения на пленке. Энергия микроволн (диапазон сверхвысоких частот, СВЧ) подобным же образом трансформируется радиометрами или радиолокаторами. В сонарах для получения изображений на фотопленке используется энергия звуковых волн.
См. также
СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН ;
РАДИОЛОКАЦИЯ ;
ГИДРОЛОКАТОР . Приборы, используемые для визуализации изображений, размещают на различных базах, в том числе на земле, судах, самолетах, воздушных шарах и космических летательных аппаратах. Специальные камеры и телевизионные системы повседневно используются для съемки представляющих интерес физических и биологических объектов на земле, на море, в атмосфере и космосе. Специальные камеры замедленной киносъемки применяются для регистрации таких изменений земной поверхности, как эрозия морских берегов, движение ледников и эволюция растительности.
Архивы данных. Фотоснимки и изображения, сделанные в рамках программ аэрокосмической съемки, надлежащим образом обрабатываются и сохраняются. В США и России архивы для таких информационных данных создаются правительствами. Один из основных архивов такого рода в США, EROS (Earth Resources Obsevation Systems) Data Center, подчиненный Министерству внутренних дел, хранит ок. 5 млн. аэрофотоснимков и ок. 2 млн. изображений, полученных со спутников "Лендсат", а также копии всех аэрофотоснимков и космических снимков поверхности Земли, хранящихся в Национальном управлении по аэронавтике и исследованию космического пространства (НАСА). К этой информации имеется открытый доступ. Обширные фотоархивы и архивы других изоматериалов имеются у различных военных и разведывательных организаций.
Анализ изображений. Самая важная часть дистанционного зондирования - анализ изображений. Такой анализ может выполняться визуально, визуальными методами, усиленными применением компьютера, и целиком и полностью компьютером; последние два включают в себя анализ данных в цифровой форме. Первоначально большинство работ по анализу данных, полученных дистанционным зондированием, выполнялось визуальным исследованием индивидуальных аэрофотоснимков или путем использования стереоскопа и наложения фотоснимков с целью создания стереомодели. Фотоснимки были обычно черно-белыми и цветными, иногда черно-белыми и цветными в ИК-лучах или - в редких случаях - многозональными. Основные пользователи данных, получаемых при аэрофотосъемке, - это геологи, географы, лесоводы, агрономы и, конечно, картографы. Исследователь анализирует аэрофотоснимок в лаборатории, чтобы непосредственно извлечь из него полезную информацию, нанести ее затем на одну из базовых карт и определить области, в которых надо будет побывать во время полевых работ. После проведения полевых работ исследователь еще раз оценивает аэрофотоснимки и использует полученные из них и в результате полевых съемок данные для окончательного варианта карты. Такими методами подготавливают к выпуску множество разных тематических карт: геологических, карт землепользования и топографических, карт лесов, почв и посевов. Геологи и другие ученые ведут лабораторные и полевые исследования спектральных характеристик различных природных и цивилизационных изменений, происходящих на Земле. Идеи таких исследований нашли применение в конструкции многоспектральных сканеров MSS, которые используются на самолетах и КЛА. Искусственные спутники Земли "Лендсат" 1, 2 и 4 имели на борту MSS с четырьмя спектральными полосами: от 0,5 до 0,6 мкм (зеленая); от 0,6 до 0,7 мкм (красная); от 0,7 до 0,8 мкм (ближняя ИК); от 0,8 до 1,1 мкм (ИК). На спутнике "Лендсат 3" используется, кроме того, полоса от 10,4 до 12,5 мкм. Стандартные составные изображения с применением метода искусственного окрашивания получаются при комбинированном использовании MSS с первой, второй и четвертой полосами в сочетании с синим, зеленым и красным фильтрами соответственно. На спутнике "Лендсат 4" c усовершенствованным сканером MSS тематический картопостроитель позволяет получать изображения в семи спектральных полосах: трех - в области видимого излучения, одной - в ближней ИК-области, двух - в средней ИК-области и одной - в тепловой ИК-области. Благодаря этому прибору пространственное разрешение было улучшено почти втрое (до 30 м) по сравнению с тем, что давал спутник "Лендсат", на котором использовался только сканер MSS. Поскольку чувствительные датчики спутников не предназначались для стереоскопической съемки, дифференцировать те или иные особенности и явления в пределах одного конкретного изображения пришлось, используя спектральные различия. Сканеры MSS позволяют различать пять широких категорий земных поверхностей: вода, снег и лед, растительность, обнаженная порода и почва, а также объекты, связанные с деятельностью человека. Научный работник, хорошо знакомый с исследуемой областью, может выполнить анализ изображения, полученного в одной широкой полосе спектра, каким, например, является черно-белый аэрофотоснимок, который в типичном случае получается при регистрации излучений с длинами волн от 0,5 до 0,7 мкм (зеленая и красная области спектра). Однако с увеличением числа новых спектральных полос глазам человека становится все труднее проводить различия между важными особенностями похожих тонов в различных участках спектра. Так, например, только один съемочный план, снятый со спутника "Лендсат" с помощью MSS в полосе 0,5-0,6 мкм, содержит ок. 7,5 млн. пикселов (элементов изображения), у каждого из которых может быть до 128 оттенков серого в пределах от 0 (черный цвет) до 128 (белый цвет). При сравнении двух изображений одной и той же области, сделанных со спутника "Лендсат", приходится иметь дело с 60 млн. пикселов; одно изображение, полученное с "Лендсат 4" и обработанное картопостроителем, содержит около 227 млн. пикселов. Отсюда с очевидностью следует, что для анализа таких изображений необходимо использовать компьютеры.
Цифровая обработка изображений. При анализе изображений компьютеры используются для сравнения значений шкалы серого (диапазона дискретных чисел) каждого пиксела снимков, сделанных в один и тот же день либо в несколько разных дней. Системы анализа изображений выполняют классификацию специфических особенностей съемочного плана в целях составления тематической карты местности. Современные системы воспроизведения изображений позволяют воспроизводить на цветном телевизионном мониторе одну или несколько спектральных полос, отработанных спутником со сканером MSS. Подвижный курсор устанавливают при этом на один из пикселов или на матрицу пикселов, находящихся в пределах некоторой конкретной особенности, например водоема. Компьютер выполняет корреляцию всех четырех MSS-полос и классифицирует все другие части изображения, полученного со спутника, которые характеризуются аналогичными наборами цифровых чисел. Исследователь может затем пометить цветным кодом участки "воды" на цветном мониторе, чтобы составить "карту", показывающую все водоемы на спутниковом снимке. Эта процедура, известная под названием регулируемой классификации, позволяет систематически классифицировать все части анализируемого снимка. Имеется возможность идентификации всех основных типов земной поверхности. Описанные схемы классификации с помощью компьютера довольно просты, однако окружающий нас мир сложен. Вода, например, совсем не обязательно имеет единственную спектральную характеристику. В пределах одного съемочного плана водоемы могут быть чистыми или грязными, глубокими или мелкими, частично покрытыми водорослями или замерзшими, и каждый из них обладает собственной спектральной отражательной способностью (а значит, и своей цифровой характеристикой). В системе интерактивного анализа цифрового изображения IDIMS используется схема нерегулируемой классификации. IDIMS автоматически помещает каждый пиксел в один из нескольких десятков классов. После компьютерной классификации сходные классы (например, пять или шесть водных классов) могут быть собраны в один. Однако многие участки земной поверхности имеют довольно сложные спектры, что затрудняет однозначное установление различий между ними. Дубовая роща, например, может оказаться на изображениях, полученных со спутника, спектрально неотличимой от кленовой рощи, хотя на земле эта задача решается очень просто. По спектральным же характеристикам дуб и клен относятся к широколиственным породам. Компьютерная обработка алгоритмами идентификации содержания изображения позволяет заметно улучшить MSS-изображение по сравнению со стандартным.
ПРИМЕНЕНИЯ
Данные дистанционного зондирования служат основным источником информации при подготовке карт землепользования и топографических карт. Метеорологические и геодезические спутники NOAA и GOES используются для наблюдения за изменением облачности и развитием циклонов, в том числе таких, как ураганы и тайфуны. Изображения, получаемые со спутников NOAA, используются также для картирования сезонных изменений снегового покрова в северном полушарии в целях климатических исследований и изучения изменений морских течений, знание которых позволяет сократить продолжительность морских перевозок. Микроволновые приборы на спутниках "Нимбус" используются для картирования сезонных изменений в состоянии ледового покрова в морях Арктики и Антарктики.
См. также
ГОЛЬФСТРИМ ;
МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ . Данные дистанционного зондирования с самолетов и искусственных спутников во все более широких масштабах используются для наблюдения за природными пастбищами. Аэрофотоснимки очень эффективны в лесоводстве благодаря достигаемому на них высокому разрешению, а также точному измерению растительного покрова и его изменения со временем.



И все же именно в геологических науках дистанционное зондирование получило наиболее широкое применение. Данные дистанционного зондирования используются при составлении геологических карт с указанием типов пород, а также структурных и тектонических особенностей местности. В экономической геологии дистанционное зондирование служит ценным инструментом для поиска месторождений полезных ископаемых и источников геотермальной энергии. Инженерная геология пользуется данными дистанционного зондирования для выбора мест строительства, отвечающих заданным требованиям, определения мест залегания строительных материалов, контроля за проведением горных работ с поверхности и за рекультивацией земель, а также для проведения инженерных работ в приморской зоне. Кроме того, эти данные используются при оценках сейсмической, вулканической, гляциологической и других опасностей геологического происхождения, а также в таких ситуациях, как лесные пожары и промышленные аварии.



Данные, полученные дистанционным зондированием, составляют важную часть исследований в гляциологии (имеющих отношение к характеристикам ледников и снегового покрова), в геоморфологии (формы и характеристики рельефа), в морской геологии (морфология дна морей и океанов), в геоботанике (ввиду зависимости растительности от лежащих под ней месторождений полезных ископаемых) и в археологической геологии. В астрогеологии данные дистанционного зондирования имеют первостепенное значение для изучения других планет и лун Солнечной системы, а также в сравнительной планетологии для изучения истории Земли. Однако наиболее захватывающий аспект дистанционного зондирования состоит в том, что спутники, выведенные на околоземные орбиты, впервые предоставили ученым возможность наблюдать, отслеживать и изучать нашу планету как целостную систему, включая ее динамичную атмосферу и облик суши, изменяющийся под влиянием природных факторов и деятельности человека. Изображения, получаемые со спутников, возможно, помогут найти ключ к предсказанию изменений климата, вызванных в том числе естественными и техногенными факторами. Хотя США и Россия с 1960-х годов ведут дистанционное зондирование, другие страны также вносят свой вклад. Японское и Европейское космические агентства планируют вывести на околоземные орбиты большое число спутников, предназначенных для исследования суши, морей и атмосферы Земли.
ЛИТЕРАТУРА
Бурша М. Основы космической геодезии. М., 1971-1975 Дистанционное зондирование в метеорологии, океанологии и гидрологии. М., 1984 Зейболд Е., Бергер В. Дно океана. М., 1984 Мишев Д. Дистанционные исследования Земли из космоса. М., 1985

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ" в других словарях:

    дистанционное зондирование - — EN remote sensing 1) The scientific detection, recognition, inventory and analysis of land and water area by the use of distant sensors or recording devices such as photography,… … Справочник технического переводчика

    дистанционное зондирование - Процесс получения информации о поверхности Земли и других небесных тел и расположенных на них объектах неконтактными методами – с искусственных спутников, самолетов, зондов и пр … Словарь по географии

    дистанционное зондирование

    дистанционное зондирование - nuotolinis tyrimas statusas T sritis ekologija ir aplinkotyra apibrėžtis Tyrimas (pvz., vandens telkinių, kraštovaizdžio), kai tyrimo prietaisas (įrenginys) nesiliečia su tiriamuoju objektu (pvz., geologinių objektų tyrimas iš oro, kosmoso ir pan … Ekologijos terminų aiškinamasis žodynas

    Неконтактная съёмка Земли (или других небесных тел) с наземных, летательных воздушных, космических аппаратов, а также с надводных и подводных судов. Объектами зондирования являются поверхность суши и океана, геологические структуры, почвенно… … Географическая энциклопедия

    Дистанционное зондирование Земли - процесс получения информации о поверхности Земли путем наблюдения и измерения из космоса собственного и отраженного излучения элементов суши, океана и атмосферы в различных диапазонах электромагнитных волн в целях определения местонахождения,… … Официальная терминология

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Исправить статью согласно стилистическим правилам Википедии … Википедия

    Зондирование дистанционное - Дистанционное зондирование (ДЗ) процесс получения с помощью аэрокосмических зондирующих технических средств, работающих в различных диапазонах электромагнитного спектра, разнообразной информации об объектах, явлениях и процессах, происходящих на… … Официальная терминология

    - (дистанционное зондирование), всякий способ получения и записи информации с расстояния. Наиболее распространенным датчиком является ФОТОКАМЕРА; такие камеры используются в летательных аппаратах, спутниках и космических зондах для сбора информации … Научно-технический энциклопедический словарь

    дистанционное измерение - nuotolinis matavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Matavimas per nuotolį nuotolinio ryšio priemonėmis. atitikmenys: angl. distance measurement; remote measurement; remote sensing; telemetry vok. Fernerkundung, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas