Презентация на тему Селекция микроорганизмов. Биотехнология

СГБОУ ПО

«Севастопольский медицинский колледж

имени Жени Дерюгиной»

Селекция микроорганизмов. Биотехнология

Преподаватель Смирнова З. М.


Селекция микроорганизмов

Селекция микроорганизмов (бактерий, сине-зеленых водорослей и грибов) производится с целью получения продуктивных штаммов и последующего их использования в промышленности, сельском хозяйстве и медицине.

Штамм – по­пу­ля­ция мик­ро­ор­га­низ­мов, ха­рак­те­ри­зу­ю­ща­я­ся сходными на­след­ствен­ны­ми осо­бен­но­стя­ми и опре­делёнными при­зна­ка­ми, по­лу­чен­ная в ре­зуль­та­те ис­кус­ствен­но­го от­бо­ра.

Методы селекции микроорганизмов

Искусственный

Выявление

отбор:

продуктивного

  • по скорости роста;
  • по продуктивности;
  • по окраске и др.

штамма

Индуцированный

(искусственный)

мутагенез


Особенности микроорганизмов

  • Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении.

Генетический аппарат бактерий представлен одной

хромосомой (1n) – гигантской кольцевой молекулой ДНК и мелкие кольцевые молекулы ДНК – плазмиды.

  • Очень высокая интенсивность размножения обеспечивает наличие неограниченного количества материала для работы.

Плазмиды

Нуклеоид с генофором


Микробиологический синтез

Микробиологический синтез – промышленный способ получения химических соединений и продуктов (например, белков, антибиотиков, витаминов), осуществляемый благодаря жизнедеятельности микробных клеток.

Микроорганизмы служат важным источником белка, который они синтезируют в 10 – 100 тыс. раз быстрее, чем животные.

Так, 400-килограммовая корова производит в день 400 граммов белка, а 400 килограммов бактерий – 40 тысяч тонн.

Результаты селекции

микроорганизмов


Результаты селекции

микроорганизмов

  • Продуктивность штаммов гриба пеницилла была повышена

в 1000 раз.

  • С помощью микробиологического синтеза получают антибиотики, аминокислоты, белки, гормоны, ферменты, витамины и многое другое.
  • Продукты микробиологической промышленности используются

в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов.

  • Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы.
  • Разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология

Биотехнология – это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Методы биотехнологии

Хромосомная инженерия

Клеточная инженерия

Генная инженерия

Микробиологический синтез

(селекция

микроорганизмов)

С развитием биотехнологии связывают решение проблем обеспечения населения продовольствием, минеральными ресурсами и энергией (биогаз), охраны окружающей среды (биологическая очистка воды) и др.


Биотехнология

Объекты биотехнологии:

  • вирусы,
  • бактерии,
  • грибы,
  • клетки и ткани растений, животных и человека.

Их выращивают на питательных средах в биореакторах-ферментерах.


Генная инженерия

Генная инженерия – совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его

в геном другого организма.

Успешно реализуются два направления:

  • Пересадка природных генов в ДНК бактерий или грибов;
  • Встраивание искусственно созданных генов, несущих заданную информацию, в плазмиды.

В настоящее время основным объектом биотехнологии являются прокариоты.


Генная инженерия

Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными,

бактерии и грибы – трансформированными ,

Трансдукция – перенос гена из одной бактерии в другую посредством бактериофагов.

Классическим объектом генной инженерии является кишечная палочка.


Генная инженерия

Процесс создания трансформированных бактерий включает в себя следующие этапы:

  • Рестрикция – «вырезание» нужных генов. Проводится с

помощью специальных «генетических ножниц», ферментов –

рестриктаз.

2. Создание вектора – специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки.

Ген "вшивают" в вектор – плазмиду, с помощью которого ген вводится в бактерию. "Вшивание" осуществляется с помощью другой группы ферментов – лигаз.

3. Трансформация – внедрение вектора в бактерию.

4. Скрининг – отбор тех бактерий, в которых внедренные гены успешно работают.

5. Клонирование трансформированных бактерий.


Процесс создания трансформированных бактерий

Искусственная ДНК-затравка для синтеза комплементарной ДНК (кДНК)

Выделение иРНК

Клетки, вырабатывающие требуемый белок

иРНК

Рестрикция

Гибридизация

Синтез кДНК

Гибрид ДНК-РНК

Одночепочечная кДНК

Удаление РНК

Синтез второй цепи кДНК

Внехромосомная ДНК (плазмида)

Разрезание плазмиды

Двухцепочечная кДНК – ген требуемого белка

«Сшивка» ДНК-лигазой

Бактерии

Клонирование

Колонии бактерий

Рекомиби-нантная плазмида

Встраивание

в бактерию

Выделение требуемого

белка

Трансформация

(вектор)


Процесс создания трансформированных бактерий:

Из эукариотических клеток, например клеток поджелудочной железы человека, выделяют мРНК-продукт нужного гена и с помощью фермента обратной транскриптазы (ревертазы) – фермент обнаруженный у РНК-содержащих вирусов, синтезируют комплементарную ей цепь ДНК.

  • Образуется гибридная ДНК-РНК-молекула.
  • мРНК удаляют при помощи гидролиза.
  • Оставшуюся цепь ДНК реплицируют при помощи ДНК-полимеразы.
  • Полученная двойная спираль ДНК состоит только из транскрибируемой части гена и не содержит интронов. Она называется комплементарной ДНК (кДНК)
  • Создание вектора – генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды.
  • Ген вшивают в плазмиду с помощью ферментов – лигаз.
  • Трансформация – внедрение вектора (плазмиды) в бактерию.
  • Бактериальные клетки приобретают способность синтезировать белки, кодируемые нужным геном.

Достижения генной инженерии

  • Более 350 препаратов и вакцин, разработанных с помощью

биотехнологий, широко используются в медицине, например:

- соматотропин – гормон роста, применяют при лечении карликовости;

- инсулин – гормон поджелудочной железы, используется для лечения

сахарного диабета;

- интерферон – антивирусный препарат, используется для лечения

некоторых форм раковых заболеваний;

  • Создание генномодифицированных растений. Лидером среди ГМО растений является соя – дешевый источник масла и белка;

- ген азотфиксации перенесен в генотип ценных с/х растений;


Получение трансгенных растений с геном bt, несущим устойчивость к насекомым

Бактерия Bacillus thuringiensis вырабатывает эндотоксин, токсичный для насекомых и безвредный для млекопитающих.

Из бактерии выделили этот

ген и ввели его в плазмиду почвенной бактерии Agrobacterium tumefaciens.

Этой бактерией были заражены растительной ткани,

выращиваемой на питательной

среде.


Трансгенные растения, созданные при помощи агробактерий

Двудольные растения:

пасленовые (картофель, томаты), бобовые (соя), крестоцветные

(капуста, редис, рапс), и т.д.

Однодольные растения:

злаки,

банановые.

Первый трансгенный продукт (томаты) поступил на рынок в 1994 г.

Сегодня в мире более 150 сортов ГМ растений допущено

к промышленному производству.

Результаты генетической модификации:

  • Устойчивость к гербицидам;
  • Устойчивость к болезням и вредителям;
  • Изменение морфологии растений;
  • Изменение размера, формы и количества плодов;
  • Повышение эффективности фотосинтеза;
  • Устойчивость к воздействию климатических факторов, засолению почв.

Хромосомная инженерия

Хромосомная инженерия – совокупность методик, позволяющих осуществлять манипуляции с хромосомами.

Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков ( дополненные линии ),

или замещении одной пары гомологичных хромосом на другую ( замещенные линии ).

В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».


Хромосомная инженерия.

Метод гаплоидов

основан на выращивании гаплоидных растений с последующим удвоением хромосом.

Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом ( n = 10), затем хромосомы удваивают и получают диплоидные ( n = 20), полностью гомозиготные растения всего за 2–3 года вместо 6–8-летнего инбридинга.

Сюда же можно отнести и метод получения полиплоидных растений


Клеточная инженерия

Клеточная инженерия – конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции.

Методы клеточной инженерии

Культивирование –

Клонирование (реконструкция) – методы внедрения в соматическую клетку отдельных клеточных органоидов, ядра, цитоплазмы (частичная гибридизация)

метод сохранения (in vitro) и выращивания в специальных питательных средах клеток, тканей, небольших органов или их частей

Гибридизация – метод получения гибридов соматических клеток неродственных и филогенетически отдаленных видов


Культивирование

Метод культуры клеток и тканей – выращивание вне организма в искусственных условиях кусочков органов, тканей или отдельных клеток;

Этапы выращивания растений из клеток:

  • Разделение клеток друг от друга и помещение в питательную среду.
  • Интенсивное размножение и развитие клеток и возникновение каллуса.
  • Помещение каллуса на другую питательную среду и образование побега.
  • Пересадка нового побега в почву.

Например, выращивание женьшеня в искусственных условиях за 6 недель, на плантациях – 6 лет, в естественной среде – 50 лет.


Гибридизация

Посев на селективную среду, выжить на которой можно только, если есть определенный человеческий ген (например, ген А)

слияние

Клетка человека

Клетка мыши

В ходе клеточных делений в гибридной клетке утрачиваются все хромосомы человека, кроме одной (например, № 17)

Клетки выжили, значит ген А лежит в хромосоме 17

Гибридная клетка (гетерокарион)

Метод гибридизации соматических клеток

При определённых условиях происходит слияние двух разных клеток

в одну гибридную, содержащую оба генома объединившихся клеток.

Гибриды между опухолевыми клетками и лимфоцитами (гибридомы)

способны неограниченно долго делиться (т.е. они «бессмертны»), как

раковые клетки и, как лимфоциты, могут вырабатывать антитела.

Такие антитела применяют в лечебных и диагностических целях.


Схема клонирования (реконструкции)

Клонирование – точное воспроизведение какого-либо объекта. Объекты, полученные в результате клонирования, называются клонами (см. «Селекция животных).


Использование микробов В хлебопечении В виноделии В производстве кормового белка В производстве молочнокислых продуктов В производстве биологически активных веществ (антибиотиков, гормонов, витаминов, аминокислот, ферментов) В сельском хозяйстве (при производстве силоса) Для биологической защиты растений и очистки сточных вод



Из более чем 100 тыс. видов известных в природе микроорганизмов человеком используется несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние десятилетия, когда были установлены многие генетические механизмы регуляции биохимических процессов в клетках микроорганизмов.


Особенности селекции микроорганизмов 1) у селекционера имеется неограниченное количество материала для работы: за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток; 2) более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении; 3) простота генетической организации бактерий: значительно меньшее количество генов, их генетическая регуляция более простая, взаимодействия генов просты или отсутствуют.




Методы селекции микроорганизмов Широко используют различные способы рекомбинирования генов: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) позволила создать штамм Pseudomonas putida, способный утилизировать углеводороды нефти.




Методы селекции микроорганизмов Важнейшим этапом в селекционной работе является индуцирование мутаций. Экспериментальное получение мутаций открывает почти неограниченные перспективы для создания высокопродуктивных штаммов. Вероятность возникновения мутаций у микроорганизмов (1x х) ниже, чем у всех других организмов (1x x10 -4). Но вероятность выделения мутаций по данному гену у бактерий значительно выше, чем у растений и животных, поскольку получить многомиллионное потомство у микроорганизмов довольно просто и сделать это можно быстро.



















Cлайд 1

Cлайд 2

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

Cлайд 3

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Cлайд 4

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Cлайд 5

Биотехнология Использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Cлайд 6

Cлайд 7

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Cлайд 8

Генная инженерия Генная инженерия - совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными, бактерии и грибы - трансформированными. Традиционным объектом генной инженерии является кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста - соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Cлайд 9

Процесс создания трансформированных бактерий включает этапы: Рестрикция - «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов - рестриктаз. Создание вектора - специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды. Ген вшивают в плазмиду с помощью другой группы ферментов - лигаз. Вектор должен содержать все необходимое для управления работой этого гена - промотор, терминатор, ген-оператор и ген-регулятор, а также маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Трансформация - внедрение вектора в бактерию. Скрининг - отбор тех бактерий, в которых внедренные гены успешно работают. Клонирование трансформированных бактерий.

Cлайд 10

Образование рекомбинантных плазмид: 1 - клетка с исходной плазмидой 2 - выделенная плазмида 3 - создание вектора 4 - рекомбинантная плазмида (вектор) 5 - клетка с рекомбинантной плазмидой

Cлайд 11

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

Cлайд 12

Хромосомная инженерия Хромосомная инженерия - совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии), или замещении одной пары гомологичных хромосом на другую (замещенные линии). В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».

Cлайд 13

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2–3 года вместо 6–8-летнего инбридинга. Сюда же можно отнести и метод получения полиплоидных растений

Cлайд 14

Клеточная инженерия Клеточная инженерия - конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции. Клетки растений и животных, помещенные в питательные среды, содержащие все необходимые для жизнедеятельности вещества, способны делиться, образуя клеточные культуры. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Следовательно, можно размножать растения в пробирках, помещая клетки в определенные питательные среды. Это особенно актуально в отношении редких или ценных растений.

Понятие селекции

  • В широком смысле слова селекция как процесс изменения домашних животных и культурных растений, по выражению Н.И. Вавилова, «представляет собой эволюцию, направленную волей человека».
  • Селекция - наука о методах создания новых пород животных, сортов растений, штаммов микроорганизмов с нужными человеку признаками.
Дайте формулировку закона гомологических рядов в наследственной изменчивости.
  • Дайте формулировку закона гомологических рядов в наследственной изменчивости.
  • Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.
  • Какое значение для селекции имеет закон гомологических рядов в наследственной изменчивости?
Закон успешно используется в селекционной практике:
  • Закон успешно используется в селекционной практике:
  • а) обнаружение спонтанных мутаций у одного вида дает основание для поисков сходных мутаций у родственных видов растений или животных;
  • б) некоторые наследственные заболевания и уродства, встречающиеся у человека, отмечены и у некоторых животных, животных с такими болезнями используют в качестве модели для изучения дефектов у человека.
  • Пр. катаракта глаза бывает у мышей, крыс, собак, лошадей; гемофилия - у мыши и кошки; диабет у крысы и т.д.
Порода, сорт -это искусственно созданная человеком популяция, характеризующаяся специфическим генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
  • Порода, сорт -это искусственно созданная человеком популяция, характеризующаяся специфическим генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
  • Штамм – чистая одновидовая культура микроорганизмов(или вирусов), выделенная из определенного источника и обладающая специфическими физиолого-биохимическими признаками
Задачи селекции
  • Создание новых пород домашних животных и сортов культурных растений
  • Улучшение ранее известных пород и сортов
Основные методы селекционной работы
  • методы
  • селекционной
  • работы
  • Скрещивание
  • Искусственный
  • отбор
  • родственное
  • неродственное
  • Внутрипородное
  • (внутрисортовое)
  • Межпородное
  • (межсортовое)
  • Отдаленная
  • гибридизация
  • массовый
  • индивидуальный
Методы селекции животных
  • Инбридинг
  • Аутбридинг
  • Гетерозис
  • Скрещивание внутри
  • одной породы между
  • близкими родственниками
  • для сохранения важных
  • признаков
  • Скрещивание различных
  • пород животных, отличающихся по ряду признаков для получения межвидовых гибридов
  • Скрещивание генетически
  • отдаленных форм
  • Получение межпородных
  • высокопродуктивных
  • гибридов
  • Каждый сорт, каждая порода имеют особого дикого предка.
  • Все породы кур происходят от дикой банкивской курицы,
  • домашние утки – от дикой кряковой утки,
  • породы кроликов – от дикого европейского кролика
  • предки крупного рогатого скота – два вида диких туров,
  • собаки – волк.
Чем отличаются культурные растения и домашние животные от своих диких предков?
  • размеры и продуктивность культурных растений выше, чем у родственных диких видов;
  • культурные растения лишены средств защиты от поедания: горьких и ядовитых веществ, шипов, колючек;
  • так же у культурных форм сильно развиты отдельные признаки, бесполезные или вредные для существования в естественных условиях, но полезные для человека.
Экстерьер - это вся совокупность наружных форм животных, их телосложение, соотношение частей тела.
  • Экстерьер крупного рогатого скота мясного направления (шортгорнская порода)
  • Экстерьер крупного рогатого скота молочного направления
  • (джерсейская порода)
  • Высокая продуктивность по тому или иному признаку связана с определенными экстерьерными особенностями.
зубр + американский бизон = зубробизон
  • Порода была создана, чтобы объединить характеристики обоих животных и с целью увеличить производство говядины.
архар(горный баран) + меринос (тонкорунная овца) = архаромеринос
  • Стада их круглогодично пасутся на высокогорных пастбищах в таких условиях, при которых не могут существовать тонкорунные овцы - мериносы
самец осла + самка лошади = мул
  • Мулы более терпеливы, устойчивы, выносливы и живут дольше, чем лошади, и менее упрямые, более быстрые и умные, чем ослы.
лев + тигр = лигр
  • Лигры - крупнейшие кошки на Земле.
  • Самый большой лигр по имени Геркулес, весом как два льва, проживает в парке «Остров джунглей» в Майами. В отличие от самок лигры-самцы обычно бесплодны, поэтому их нельзя разводить.
африканский сервал + домашняя кошка = саванна
  • Саванны гораздо более общительные, чем обычные домашние кошки, и их часто сравнивают с собаками благодаря их преданности хозяину. Их можно обучить ходить на поводке и даже приносить брошенные хозяином предметы.
Селекция растений
  • Близко родственное скрещивание и самоопыление используется для выведения «чистых линий»
  • Гетерозис – гибридная сила. Потомки от скрещивания чистых линий превосходят по качествам родительские формы.
  • И. В. Мичурин разработал метод отдаленной гибридизации для получения новых сортов
Сорта капусты Гетерозис- явление гибридной силы.
  • Гетерозис- явление гибридной силы.
  • В первом поколении гибридов повышается жизнеспособность и наблюдается мощное развитие (более крупные размеры), более высокая урожайность, более активный синтез органических веществ. Объясняется гетерозис переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов.
  • При последующих скрещиваниях гибридов между собой гетерозис затухает вследствие выщепления гомозигот.
Тритикале
  • Тритикале
  • (от лат. triticum - пшеница и лат. secale - рожь) - злак, гибрид ржи и пшеницы.
  • Тритикале обладает повышенной морозостойкостью (больше чем у озимой пшеницы), устойчивостью против грибных и вирусных болезней, пониженной требовательностью к плодородию почвы, содержат много белка в зерне.
Центры происхождения культурных растений (по Н.И.Вавилову)
  • Название центра
  • Географическое положение
  • Культурные растения
  • Южноазиатский тропический
  • Индия, Индокитай, Южный Китай, о-ва Юго-Восточной Азии
  • Рис, сахарный тростник, цитрусовые, огурец, баклажан, черный перец (50% к.р)
  • Восточноазиатский
  • Центральный и Восточный Китай, Япония, Корея, Тайвань
  • Соя, просо, гречиха, плодовые и овощные- слива, вишня, редька (20% к.р)
  • Юго-Западноазиатский
  • Малая и Средняя Азия, Афганистан, Юго-Западная Индия
  • Пшеница, рожь, бобовые, лен, репа, морковь, чеснок, виноград, абрикос, груша(14% к.р)
  • Средиземноморский
  • Побережье Средиземного моря
  • Капуста, сахарная свекла, маслины, кормовые травы(11%к.р)
  • Абиссинский
  • Абиссинское нагорье Африки
  • Твердая пшеница, ячмень, кофе, бананы
  • Центральноамериканский
  • Южная Мексика
  • Кукуруза, какао, тыква, табак, хлопчатник, арахис, фасоль
  • Южноамериканский
  • Южная Америка вдоль западного побережья
  • Картофель, ананас, хинное дерево
Селекция микроорганизмов
  • использование микро
  • организмов
  • Синтез пищевых
  • добавок
  • Синтез БАВ
  • Производство
  • лекарств
  • Производство
  • кормов для
  • животных
  • Искусственный мутагенез – метод селекционной работы с микроорганизмами
  • Мутагены: рентгеновские лучи, яды, радиация…
Микробиология (от греч. mikros - малый, bios-жизнь, logos - наука), наука о строении и жизнедеятельности мельчайших живых существ, называемых микроорганизмами.
  • Микроорганизмы
  • Бактерии
  • Вирусы
  • Грибы
  • Простейшие
  • Сине-зеленые водоросли
  • Микроорганизмы– это группа прокариотических и эукариотических одноклеточных организмов, различаемых только под микроскопом.
  • Кокки - возбудители бактериального менингита
  • Герпес-вирус
  • 6-го типа
  • Дрожжеподобные грибы вида C.albicans
  • Paramecium, род простейших одноклеточных
  • Цианобактерии
Биотехнология – это технология получения из живых клеток или с их помощью необходимых человеку продуктов.
  • Биотехнология – это технология получения из живых клеток или с их помощью необходимых человеку продуктов.
Примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов:
  • Примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов:
  • хлебопечение;
  • пивоварение;
  • виноделие;
  • приготовление молочных продуктов;
  • производство кормового белка;
  • производство ферментных и витаминных препаратов используемых в пищевой промышленности, медицине, животноводстве.
Основные направления селекции микроорганизмов
  • Генная инженерия
  • Клеточная
  • инженерия
  • Биотехнология

ионизирующих излучений и ультрафиолетовых лучей наследственных изменений (мутаций). Под действием излучений возникают качественно те же мутации, что и без облучения, но значительно чаще; соотношение разных типов мутаций также может быть иным. Используется в генетических исследованиях, в селекции промышленных микроорганизмов, сельскохозяйственных и декоративных растений. Повышение частоты вредных мутаций в результате увеличения содержания в биосфере радиоактивных изотопов - одна из основных опасностей радиоактивного загрязнения биосферы. Отдельно выделена группа биологически активных веществ, которые влияют не только на процессы роста и развития растений, но и вызывают наследственные изменения в организме - химические мутагены. С помощью мутагенов можно разорвать сцепленно наследуемые признаки, преодолеть нескрещиваемость между отдаленными формами и стерильность собственной пыльцы, решить задачи, не поддающиеся разрешению при использовании других методов селекции. В ряде случаев возникают совершенно новые формы и признаки, не встречающиеся в природе, что позволяет расширить естественное разнообразие форм культурных растений.