Применение tl494 в преобразователе напряжения 12в 220в. TL494 схема включения, принцип работы, примеры схем, чертежи печатных плат

Только самое главное.
Напряжение питания 8-35в (вроде можно до 40в, но не испытывал)
Возможность работать в однотактном и двухтактном режиме.

Для однотактного режима максимальная длительность импульса составляет 96% (не меньше 4% мертвого времени).
Для двухтактного варианта – длительность мертвого времени не может быть меньше 4%.
Подавая на вывод 4 напряжение 0…3,3в можно регулировать мертвое время. И осуществлять плавный запуск.
Имеется встроенный стабилизированный источник опорного напряжения 5в и током до 10ма.
Имеется встроенная защита от пониженного напряжения питания, выключаясь ниже 5,5…7в (чаще всего 6,4в). Беда в том, что при таком напряжении мосфеты уже переходят в линейный режим и сгорают…
Имеется возможность выключит генератор микросхемы замкнув ключом вывод Rt (6) вывод опорного напряжения (14) или вывод Ct (5) на землю.

Рабочая частота 1…300кГц.

Два встроенных операционных усилителя «ошибки» с коэффициентом усиления Ку=70..95Дб. Входы - выводы (1); (2) и (15); (16). Выходы усилителей объединены элементом ИЛИ, поэтому тот на выходе которого напряжение больше и управляет длительностью импульса. Один из входов компаратора обычно привязывают к опорному напряжению (14), а второй – куда нада…Задержка сигнала внутри Усилителя 400нс, они не предназначены для работы в пределах одного такта.

Выходные каскады микросхемы при среднем токе в 200ма, достаточно быстро заряжают входную емкость затвора мощного мосфета, но не обеспечивают ее разряд. за приемлемое время. В связи с чем обязательно необходим внешний драйвер.

Вывод (5) кондесатор С2 и вывод (6) резисторы R3; R4 - задают частоту внутреннего генератора микросхемы. В двухтактном режиме она делиться на 2.

Есть возможность синхронизации, запуск входными импульсами.

Однотактный генератор с регулировкой частоты и скважности
Однотактный генератор с регулировкой частоты и скважности (отношение длительности импульса к длительности паузы). С одно транзисторным выходным драйвером. Такой режим реализуется, если соединить вывод 13 с общей шиной питания.

Схема (1)


Поскольку микросхема имеет два выходных каскада, которые в данном случае работают синфазно, их для увеличения выходного тока можно включить параллельно… Или не включать…(зеленым цветом на схеме) Так же не всегда ставиться и резистор R7.

Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5; R6. Ну понимаете R10 будет греться.

Цепь С6; R11, на (3) ногу, ставят для большей устойчивости, даташит просит, но работает и без нее. Транзистор можно взять и npn структуры.

Схема (2)


Схема (3)

Однотактный генератор с регулировкой частоты и скважности. С двух транзисторным выходным драйвером (комплементарный повторитель).
Что могу сказать? Форма сигнала лучше, сокращаются переходные процессы в моменты переключения, выше нагрузочная способность, меньше тепловые потери. Хотя может быть это субъективное мнение. Но. Сейчас я использую только двух транзисторный драйвер. Да, резистор в цепи затвора ограничивает скорость переходных процессов при переключении.

Схема (4)


А здесь имеем схему типичного повышающего (boost) регулируемого однотактного преобразователя, с регулировкой напряжения и ограничением тока.

Схема рабочая, собиралась мной в нескольких вариантах. Выходное напряжение зависит от количества витков катушки L1, ну и от сопротивления резисторов R7; R10; R11, которые при налаживании подбираются... Саму катушку можно мотать на чем угодно. Размер - в зависимости от мощности. Кольцо, Ш-сердечник, даже просто на стержне. Но она не должна входить в насыщение. Поэтому если кольцо из феррита, то нужно разрезать и склеить с зазором. Хорошо пойдут большие кольца из компьютерных блоков питания, их резать не надо, они из "рапыленного железа" зазор уже предусмотрен. Если сердечник Ш-образный - ставим не магнитный зазор, бывают с коротким средним керном - эти уже с зазором. Короче, мотаем толстым медным или монтажным проводом (0,5-1,0мм в зависимости от мощности) и числом витков 10-и больше (в зависимости, какое напряжение желаем получить). Подключаем нагрузку на планируемое напряжение небольшой мощности. Подключаем наше творение к аккумулятору через мощную лампу. Если лампа не загорелась в полный накал - берем вольтметр и осцилограф...

Подбираем резисторы R7; R10; R11 и число витков катушки L1, добиваясь задуманного напряжения на нагрузке.

Дроссель Др1 - 5...10 витков толстым проводом на любом сердечнике. Видел даже варианты, где L1 и Др1 намотаны на одном сердечнике. Сам не проверял.

Схема (5)


Это тоже реальная схема повышающего преобразователя, который можно использовать, например для зарядки ноутбука от автомобильного аккумулятора. Компаратор по входам (15);(16) следит за напряжением аккумулятора "донора" и отключит преобразователь, когда напряжение на нем упадет ниже выбранного порога.

Цепь С8; R12; VD2 - так называемый Снаббер, предназначен для подавления индуктивных выбросов. Спасает низковольтный МОСФЕТ, например IRF3205 выдерживает, если не ошибаюсь, (сток - исток) до 50в. Однако здорово уменьшает КПД. И диод и резистор прилично греются. За то увеличивается надежность. В некоторых режимах (схемах) без него просто сразу сгорает мощный транзистор. А бывает работает и без всего этого...Надо смотреть осциллограф...

Схема (6)


Двухтактный задающий генератор.
Различные варианты исполнения и регулировок.
На первый взгляд огромное разнообразие схем включения сводится к намного более скромному количеству действительно работающих… Первое, что я обычно делаю, когда вижу "хитрую" схему – перерисовываю в привычном для себя стандарте. Раньше это называлось – ГОСТ. Сейчас рисуют не понятно как, что крайне затрудняет восприятие. И скрывает ошибки. Думаю, что часто это делается специально.
Задающий генератор для полумоста или моста. Это простейший генератор, Длительность импульсов и частота регулируется в ручную. Оптроном по (3) ноге тоже можно регулировать длительность, однако регулировка очень острая. Я использовал для прерывания работы микросхемы. Некоторые "корифеи" говорят, что управлять по (3) выводу нельзя, микросхема сгорит, но мой опыт подтверждает работоспособность данного решения. Кстати оно удачно использовалось в сварочном инверторе.

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, - словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

Документация

Анализ описаний рассматриваемого типа микросхемы от разных производителей показывает практическую идентичность ее характеристик. Объем сведений, приводимых разными фирмами, практически одинаков. Более того, TL494CN datasheet от таких брендов, как Motorola, Inc и ON Semiconductor повторяют друг друга в своей структуре, приводимых рисунках, таблицах и графиках. Несколько отличается от них изложение материала у фирмы Texas Instruments, однако при внимательном его изучении становится ясно, что имеется в виду идентичное изделие.

Назначение микросхемы TL494CN

Описание ее по традиции начнем с назначения и перечня внутренних устройств. Она представляет собой ШИМ-контроллер с фиксированной частотой, предназначенный преимущественно для применения в ИБП, и содержащий следующие устройства:

  • генератор пилообразного напряжения (ГПН);
  • усилители ошибки;
  • источник эталонного (опорного) напряжения +5 В;
  • схема регулировки «мертвого времени»;
  • выходные на ток до 500 мА;
  • схема выбора одно- или двухтактного режима работы.

Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от - 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от -25 до +85 °С.

Конструкция микросхемы TL494CN

Описание на русском языке выводов ее корпуса приведено на рисунке, расположенном ниже.

Микросхема помещена в пластиковый (на это указывает литера N в конце ее обозначения) 16-контактный корпус с выводами pdp-типа.

Внешний вид ее показан на фото ниже.

TL494CN: схема функциональная

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (~ 48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок. Контакт № 4 - это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА). Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания - первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий. Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна. В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера - на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control). Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

  • Важно запомнить ! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е. не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

  • f = 1,1: (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Функции выводов выходных сигналов

Выше они же были перечислены для TL494CN. Описание на русском языке их функционального назначения будет ниже приведено с подробными пояснениями.

Вывод 8

На этой микросхеме есть 2 npn-транзистора, которые являются ее выходными ключами. Этот вывод - коллектор транзистора 1, как правило, подключенный к источнику постоянного напряжения (12 В). Тем не менее в схемах некоторых устройств он используется в качестве выхода, и можно увидеть на нем меандр (как и на № 11).

Вывод 9

Это эмиттер транзистора 1. Он управляет мощным транзистором ИБП (полевым в большинстве случаев) в двухтактной схеме либо напрямую, либо через промежуточный транзистор.

Вывод 10

Это эмиттер транзистора 2. В однотактном режиме работы сигнал на нем такой же, как и на № 9. В двухтактном режиме сигналы на №№ 9 и 10 противофазны, т. е. когда на одном высокий уровень сигнала, то на другом он низкий, и наоборот. В большинстве устройств сигналы с эмиттеров выходных транзисторных ключей рассматриваемой микросхемы управляют мощными полевыми транзисторами, приводимыми в состояние ВКЛЮЧЕНО, когда напряжение на выводах 9 и 10 высокое (выше ~ 3,5 В, но он никак не относится к уровню 3,3 В на №№ 3 и 4).

Вывод 11

Это коллектор транзистора 2, как правило, подключенный к источнику постоянного напряжения (+12 В).

  • Примечание : В устройствах на TL494CN схема включения ее может содержать в качестве выходов ШИМ-контроллера как коллекторы, таки эмиттеры транзисторов 1 и 2, хотя второй вариант встречается чаще. Есть, однако, варианты, когда именно контакты 8 и 11 являются выходами. Если вы найдете небольшой трансформатор в цепи между микросхемой и полевыми транзисторами, выходной сигнал, скорее всего, берется именно с них (с коллекторов).

Вывод 14

Это выход ИОН, также описанный выше.

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН - на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи (№ 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить - из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая - на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

Первичная обмотка трансформатора содержит 10 витков. Вторичная обмотка содержит около 100 витков. Таким образом, коэффициент трансформации равен 10. Если подать 10В в первичную обмотку, вы должны получить около 100 В на выходе. Сердечник выполнен из феррита. Можно использовать некоторый среднего размера сердечник от трансформатора блока питания ПК.

Будьте осторожны, выход трансформатора под высоким напряжением. Ток очень низкий и не убьет вас. Но можно получить хороший удар. Еще одна опасность - если вы установите большой конденсатор на выходе, он будет накапливать большой заряд. Поэтому после выключения схемы, его следует разрядить.

На выходе схемы можно включить любой индикатор вроде лампочки, как на фото ниже.

Она работает от напряжения постоянного тока, и ей необходимо около 160 В, чтобы засветиться. (Питание всего устройства составляет около 15 В - на порядок ниже.)

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.

Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 - это от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.

С8 - конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.

С6 - еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость - до нескольких сотен пикофарад.

Простой преобразователь 12В на 220В собран на известной всем микросхеме TL494. ШИМ контроллер нагружен на комплементарные транзисторы серии BC547 и BC557, те в свою очередь раскачивают полевые транзисторы IRF540, нагрузкой которой является силовой трансформатор AC. На выходе трансформатора получаем модифицированный синусоидальный сигнал с напряжением 220В.

Схема инвертора на ШИМ контроллере TL494

Применение микросхемы ШИМ TL494 не только делает конструкцию чрезвычайно экономичной с ее минимальными деталями, но также весьма эффективной и точной. Подстройка частоты от 60Гц до 50Гц производиться резистором 100К и конденсатором 220nF подключенные к 5-ой и 6-ой ножки микросхемы. Мощность инвертора будет определяется мощностью используемого трансформатора и емкостью аккумулятора. Для изготовления трансформатора применяется любой подходящий ферритовый сердечник, который способен разместить две обмотки.

Первичная обмотка состоит из 5 х 5 витков с центральным отводом, намотаны параллельно, диаметр проводов 2мм. Вторичная обмотка имеет от 200 до 300 витков провода диаметром 0,5мм. При включении инвертора схема сразу начинает работать, стоит лишь подстроить частоту равную частоте электрической сети. В большинстве случаев схема инвертора подойдёт для питания электрических ламп, нагревательных элементов небольшой мощности и т.д.

Открываем новую довольно интересную тему про преобразователи напряжения, в частности автомобильные.

Преобразователи напряжения – это довольно актуальная тема для радиолюбителей автомобилистов, которые задаются целью установить в машине качественную акустическую систему с мощным бомбовым сабом и сателлитами, получив тем самым отличное качественное звучание, радующее слух не только владельца, но и окружающих. Уж не знаю, конечно, насколько окружающим это нравится. Особенно в ночное время во дворе многоквартирного дома (прим. авт. AndReas). Но непосредственно для радиолюбителя важен сам факт качества звучания. Добиться безупречности можно при наличии нескольких составляющих: во-первых, установкой правильно рассчитанного и собранного саба (лучше самодельного), во-вторых, подключением акустической системы, состоящей из сабвуфера и сателлитов, к усилителю мощности звуковой частоты с малым коэффициентом нелинейных искажений и, в-третьих, питанием усилителя мощности звуковой частоты (УМЗЧ) от бортовой сети автомобиля (нужен преобразователь напряжения ). В данной статье остановимся на последнем факторе подробнее.

Напряжение автомобильной бортовой сети составляет 12…14 вольт. Как известно, все качественные, мощные усилители звуковой частоты требуют значительно большего напряжения питания (вплоть до 100 вольт), что может быть достигнуто применением . Основные блоки типичных преобразователей напряжения состоят из ШИМ – контроллера и выходного каскада на мощных транзисторах и трансформатора. В качестве ШИМ контроллера для автомобильных преобразователей напряжения могут применяться различные микросхемы. Особенно популярной и широко применяемой является TL494 или КР1114ЕУ4. Вообще-то на сайте уже есть несколько схем преобразователей напряжения. Ознакомьтесь: Преобразователь 12 вольт - 220 вольт - довольно неплохой вариант для переделки под питающий блок усилителя; Простейший преобразователь напряжения ; Импульсный преобразователь напряжения - это уже более серьёзный вариант с применением TL494 или КР1114ЕУ4. Также совершенно обоснованно стоит упомянуть об автомобильном преобразователе напряжения , рассчитанном для питания усилителя мощности звуковой частоты на микросхеме TDA7294 - собран на TL494 или КР1114ЕУ4.

Теперь поговорим о трансформаторе. Трансформатор для автомобильного преобразователя напряжения мотается на ферритовом кольце. Из отечественных ферритов наилучшими характеристиками обладают ферриты марок 2500НМС1 и 2500НМС2 как имеющие, в отличие от остальных марок, отрицательную температурную зависимость потерь и предназначенные для сильных магнитных полей. Но также возможно применение 2000НМ1, как более ходовой марки. Можно использовать кольца 40х25х11 или 45х28х12. Для надёжности лучше взять два таких кольца, т.к. мощность нужна немаленькая, и склеить их любым клеем по керамике. После склеивания края закруглить напильником.

Теперь нужно рассчитать количество витков обмоток в зависимости от нужного напряжения и мощности на выходе автомобильного преобразователя напряжения. Возьмем для примера максимальную мощность трансформатора 500 ватт. Тогда ток в первичной обмотке равен I=500/12=41,66 ампера. Округленно примем I=42 А. Но в преобразователях напряжения первичная обмотка трансформатора делится на две части (двухтактный преобразователь напряжения ). Соответственно ток в каждом плече составит 21 ампер. Выбираем сечение обмоточного провода трансформатора. Площадь сечения получается S=0,157*21=3,297 мм 2 или же провод сечением D=2 мм. Но чем толще провод, тем ниже КПД и выше нагрев трансформатора. Рекомендуется взять несколько проводов меньшим диаметром, к примеру, 0,6 мм. Вычисляем его площадь по формуле S=?*R 2 , т.е. 0,3 2 *3,14=0,283 мм 2 . Далее 3,297/0,283=11,7 округлим до 12. Значит, для намотки одного плеча нам понадобится 12 проводов сечением 0,6 мм. Вторичная обмотка трансформатора преобразователя напряжения рассчитывается таким же образом. Определяем максимальный ток в зависимости от нужного напряжения (т.е. напряжение питания усилителя мощности звуковой частоты); ток умножаем на 0,157 мм 2 , найдя сечение провода; рассчитываем сколько потребуется проводков меньшим сечением. Определившись с количеством витков в первичной обмотке, можно приступать к самой намотке трансформатора автомобильного преобразователя напряжения. Для этого берутся все 12 проводов, если используется провод сечением 0,6 мм, переплетаются косичкой и наматываются на кольца. Вторая часть первичной обмотки наматывается также. Очень важно, чтобы витки обеих обмоток распределялись равномерно по всему кольцу, иначе трансформатор преобразователя будет греться, особенно на максимальной или близкой к этому значению мощности. Можно осуществить намотку другим способом. Намотать 12 отдельных обмоток для одного плеча, а потом точно также для второго и соединить их. Выводы трансформатора сразу идут в печатную плату. Соединять надо так: 1-начало, 2-конец, т.е. 1;2;1;2. По окончанию намотки первичной обмотки можно её обернуть тканевой изоляционной лентой, а потом уже мотать вторичную. Вторичная обмотка мотается аналогично. Количество витков будет зависеть от напряжения, которое вы хотите получить. Можете воспользоваться программой для расчета импульсного трансформатора для автомобильного преобразователя напряжения:

Скачать программу для расчета импульсного трансформатора

Особое внимание также стоит уделить выпрямлению и стабилизации полученного напряжения на выходе трансформатора автомобильного преобразователя. Необходимо подобрать импульсные диоды, чтобы они выдержали необходимую силу тока, способные работать на частоте от 80…100 кГц. На выход необходимо установить дроссели. Для сердечника дросселей можно применить кольца, используемые в компьютерных блоках питания. Кстати, оттуда же можно выпаять и ШИМ – контроллер TL494 (КР1114ЕУ4). Дроссели содержат по 5…6 витков провода сечением не менее 2 мм. Есть ещё одна маленькая хитрость. Обычно при питании устройств, в том числе и усилителей звуковой частоты, используются фильтрующие конденсаторы очень большой ёмкости. Рекомендуется 1000…2000 мкФ на 1 ампер нагрузки. Но для автомобильных преобразователей напряжения важна не сама ёмкость конденсаторов, а количество самих конденсаторов. Т.е. лучше поставить, скажем, 10 штук по 1000 мкФ, чем один на 47000 мкФ.

Структурно принцип работы автомобильного преобразователя напряжения можно описать так. ШИМ контроллер TL494 (КР1114ЕУ4) задает частоту открытия и закрытия транзисторов. Двухтактным такой преобразователь напряжения называется потому, что при открытии одного плеча другое закрывается. Смена режима происходит с заданной частотой ШИМ контроллера. Постоянное напряжение, преобразованное выходным каскадом на мощных транзисторах в переменное, подается на трансформатор. После этого напряжение выпрямляется диодным мостом, фильтруется дросселями и конденсаторами. Ну а дальше автомобильный преобразователь напряжения выполняет непосредственно ту функцию, для которой создавался.

Ну и от полутеории перейдем к практике, добавив в копилку приведенных выше ссылок на схемы преобразователей напряжения ещё следующие схемы.
Автомобильный преобразователь напряжения с мощностью 500 ватт.

Варианты использования выходов автомобильного преобразователя напряжения:

Количество выходных обмоток автомобильного преобразователя напряжения можно уменьшить или вообще модернизировать, применив ультраскоростные диоды, рабочее напряжение которых значительно выше напряжения диодов Шотки, что позволяет получить выходное напряжение вплоть до 90 В, а при замене электролитических фильтрующих конденсаторов на более высоковольтные и выше 90 вольт.

Как видим, в выходном каскаде автомобильного преобразователя напряжения используются мощные полевики IRF3205 (отечественный аналог КП783А). Можно заменить на NTP5426, IRF540, IRF1405, IRF1407, IRF2805.

В модернизированной выходной схеме используются быстродействующие диоды 30EPF06.

Немного планку по мощности и приведем следующую схему автомобильного преобразователя напряжения 300 ватт.

В общем-то принципиальная разница в схемах состоит только в упрощении выходного каскада. Варианты использования выходов преобразователя следующие:

А если мы увеличим количество мощных полевых транзисторов IRF3205 в выходном каскаде преобразователя напряжения до трех штук на плечо, то получим весьма солидную мощность в 700 ватт.

Таким образом, при использовании автомобильного преобразователя напряжения конструктивно должно получиться нечто вроде этого:

Чертеж печатной платы и расположение деталей на ней в формате.lay можете также скачать:

Скачать чертеж печатной платы

Данные преобразователи напряжения, несмотря на упрощенную схемотехнику, достаточно надежны.

Непосредственно перед публикацией статьи, порывшись дополнительно в рунете, пришёл к выводу, что из приведенных выше схем автомобильных преобразователей напряжения можно исключить некоторые компоненты, тем самым значительно упростив конструкцию. А именно, выходной каскад на полевых транзисторах подключается непосредственно к выходному трансформатору. Исключаются дроссели L4 для 300 ваттного и трансформатор TV1 со всей обвязкой для 500 и 700 ваттных преобразователей. Можно исключить оптрон IC1, тем самым убрав блок защиты. В итоге можно получить очень простую для повторения схему автомобильного преобразователя напряжения.

Под эту схему есть также печатная плата в формате.lay. В архиве три печатки. Первый вариант - это печатная плата с подписанными элементами, второй вариант - обычный вариант с одним напряжением на выходе, третий вариант - с двумя разными напряжениями на выходе.

(не TDA1555, а более серьёзные микросхемы), требуют БП с двухполярным питанием. И сложность тут возникает как раз не в самом УМЗЧ, а устройстве, которое повышало бы напряжение до нужного уровня, передавая хороший ток в нагрузку. Этот преобразователь является самой тяжелой частью самодельного автоусилителя. Однако при выполнении всех рекомендаций, вы сможете по данной схеме собрать проверенный ПН, схема которого приведена ниже. Чтоб увеличить - клац по ней.

Основа преобразователя - генератор импульсов построенный на специализированной распространённой микросхеме. Частота генерации задаётся номиналом резистора R3. Можно изменить её, добиваясь наилучшей стабильности работы и КПД. Рассмотрим подробнее устройство управляющей микросхемы TL494.

Параметры микросхемы TL494

Uпит.микросхемы (вывод 12) - Uпит.min=9В; Uпит.max=40В
Допустимое напряжение на входе DA1, DA2 не более Uпит/2
Допустимые параметры выходных транзисторов Q1, Q2:
Uнас менее 1.3В;
Uкэ менее 40В;
Iк.max менее 250мА
Остаточное напряжение коллектор-эммитер выходных транзисторов не более 1.3В.
I потребляемый микросхемой - 10-12мА
Допустимая мощность рассеивания:
0.8Вт при температуре окр.среды +25С;
0.3Вт при температуре окр.среды +70С.
Частота встроенного опорного генератора не более 100кГц.

  • генератор пилообразного напряжения DA6; частота определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам;
  • источник опорного стабилизированного напряжения DA5 с внешним выходом (вывод 14);
  • усилитель ошибки по напряжению DA3;
  • усилитель ошибки по сигналу ограничения тока DA4;
  • два выходных транзистора VT1 и VT2 с открытыми коллекторами и эмиттерами;
  • компаратор "мертвой зоны" DA1;
  • компаратор ШИМ DA2;
  • динамический двухтактный D-триггер в режиме деления частоты на 2 - DD2;
  • вспомогательные логические элементы DD1 (2-ИЛИ), DD3 (2-Й), DD4 (2-Й), DD5 (2-ИЛИ-НЕ), DD6 (2-ИЛИ-НЕ), DD7 (НЕ);
  • источник постоянного напряжения с номиналом 0.1B DA7;
  • источник постоянного тока с номиналом 0,7мА DA8.
Схема управления будет запускаться в том случае, если на вывод 12 подать любое питающее напряжение, уровень которого находится в диапазоне от +7 до +40 В. Цоколёвка микросхемы TL494 на картинке ниже:


Раскачивают нагрузку (силовой трансформатор) полевые транзисторы IRFZ44N. Дроссель L1 намотан на феритовом кольце диаметром 2 см из компьютерного блока питания. Он содержит 10 витков сдвоенным проводом диаметром 1 мм которые распределены по всему кольцу. Если у вас нет кольца, его можно намотать на феритовом стержне диаметром 8 мм и длиной пару сантиметров (не критично). Рисунок платы в Lay формате - скачайте в .


Предупреждаем , от правильного изготовление трансформатора сильно зависит роботоспособность блока преобразователя. Он мотается на феритовом кольце марки 2000НМ размерами 40*25*11 мм. Сначала нужно напильником закруглить все грани, обмотать его полотняной изолентой. Первичная обмотка намотана жгутом который состоит из 5 жил толщиной 0,7мм и содержит 2*6 витков, то есть 12. Мотается она так: берем одну жилу и мотаем ею 6 витков равномерно распределенных по кольцу, потом следующую мотаем вплотну к первой и так все 5 жил. На выводах жилы скручиваются. Потом на свободной от проводов части кольца начинаем мотать вторую половину первичной обмотки таким же образом. Получаем две равноценных обмотки. После этого обматываем кольцо изолентой и мотаем вторичную обмотку проводом 1,5мм 2*18 витков так же как и первичку. Чтобы при первом пуске ничего не сгорело, надо включать через резисторы Ом на 100 в каждом плече, а первичку трансформатора через лампу на 40-60 Ватт и все будет гуд даже при случайных ошибках. Небольшое дополнение: в схеме блока фильтров есть небольшой дефект, детали с19 r22 следует поменять местами, так как при вращении фазы на осциллографе появляется затухание амплитуды сигнала. В общем этот повышающий преобразователь напряжения можно смело рекомендовать для повторения, так как успешно собран он был уже многими радиолюбителями.