Прочностные свойства грунтов и определение их показателей. Деформационные свойства дисперсных грунтов Прочностные характеристики грунта

Исследования деформационных характеристик грунтов направлено на определение возможности удерживать без проседания и изменения целостности как части конструкции, так и всего строения. На стадии проекта изучение данных характеристик является основным, так как именно такие исследования определяют необходимый вид фундамента и его глубину. Также особенности устойчивости грунтов оказывают прямое влияние, насколько высоким может быть будущее строение.

Важность таких исследований очень велика. В случаях проведения некорректного исследования, полученные данные, могут привезти к нарушению целостности здания или его полному разрушению. Устойчивость к деформациям грунта напрямую оказывает влияние на наклон, появление трещин, просадки фундамента и других негативных явлений.

Определение несущей способности

Определение несущей способности грунта происходит через использование нагрузок и отслеживанием всех происходящих деформаций. Опытным путем устанавливается, какие будут получены результаты от нагрузок разной степени. Так определяется степень деформационных характеристик грунта при различных нагрузках. И определяется нагрузка, при которой никаких значительных деформаций не произошло.

В зависимости от вида грунта деформационные характеристики получаются различными. Так глина практически не имеет деформаций при различных нагрузках, в то время как, песок не выдерживает нагрузки и сдвигается. Такой сдвиг вызывает разрушение фундамента, стен, проседания одной ил нескольких сторон.

Сама прочность грунта имеет сильную зависимость от того, в каком состоянии она находиться (насыщенность влагой, температура и т.д.).

Сила воздействия

В проведении испытаний является значительным не только изучение степени переносимого напряжения от массы здания или конструкции. Значительными условиями для расчета являются силы, воздействующие на само здание. В период эксплуатации постоянно оказывают влияние такие дополнительные силы, как:

  • давление атмосферы;
  • дополнительная масса от осадков;
  • ветер.

На уровне лабораторных испытаний устанавливается максимальная и безопасная степень воздействия горизонтальных и вертикальных нагрузок. Так определяется несущая способность грунтов и уровень опасности, который следует предусмотреть на случай чрезвычайных последствий. Во время заключения по таким испытаниям главным показателям является устойчивость к сдвигающим деформациям, что и приводит к изменениям целостности и разрушениям.

Изучение образцов грунта

Для точного определения деформационные характеристики грунтов , проводятся специальные испытания. Проведение исследований регламентировано и имеет ряд определенных методов и оборудования, которое соответствует соответствующему ГОСТу № 12248-96.

Одним из основных регламентированных методов исследования является метод «одно плоскостного среза». Специальный прибор производит сдвиг одной части по отношению у другой. Так определяется главная характеристика деформации грунта.

Для проведения испытаний используется не меньше 3-х образцов грунта. Используемые образцы подвергаются сдвигающей силе, которая с каждым этапом нарастает и в конечном итоге приводит к деформации. В первоначальных этапах проверяется горизонтальная прочность перед сдвигами. На второй стадии такой же процесс с тремя образцами проводят для определения сдвигающей деформации по горизонтали.

Шаг изменения нагрузки происходит в 0,1 атмосферы. Процесс исследований прекращается при разрушении грунта или сдвига в полсантиметра.

Все лабораторные результаты заносятся в график, где и устанавливается удельное сцепление и сопротивление грунту.

Все полученные результаты опытных испытаний и средние расчетные сравниваются с установленным государственным стандартам для строения здания.

Период проведения исследований

Проведение исследований на деформационные характеристики обязано проходить на этапе изыскательных работ, на этапе проектирования будущей постройки. Проведение испытания несущей способности грунта обязательно для постройки любых зданий и сооружений, особенно важно для зданий с большим количеством этажей.

Забор проб производится специальным оборудованием с помощью шурфов. Шурф представляет собой забуренную скважину на глубину, откуда будет начинаться заливка фундамента. Проведение взятия проб грунта обязательно производится таким методом, так как при вскапывании происходи разрыхление и перемешивание. Взятие проб производят по всей длине шурфа через каждый метр. Для испытаний подходят только целостные пробы.

Сами исследования проводятся на грунте в различных состояниях: повышенной влажности, нагретом, минимального количества влаги, замершем, уплотненном, неуплотненном.

Основные расчеты несущей способности грунтовых пород

Деформация грунта определяется с помощью определенных значений:

  • прочность – противостояние воздействию извне. Измеряется максимальным пределом. За предел принимается максимально переносимое напряжение без нарушения целостности;
  • угол трения – каждый вид породы имеет свой угол трения;
  • сцепление – сила связей между частичками грунта;
  • модуль деформации – выражает через отношение деформации и напряжения.

Все характеристики имеют различные значения при определенных изменениях состояния грунта.

Влияние на деформации

На деформации грунта влияет несколько определенных факторов:

  • размер частиц грунта – чем меньше частицы, тем выше плотность;
  • пористость – чем больше расстояние частиц друг от друга, тем ниже прочность грунта;
  • влажность – повышенная влажность снижает предельное значение прочности;
  • подземные воды – наличие большого водного фронта и его сезонные колебания влияют на прочность грунта;
  • резкие погодные изменения – при цикличном и резком переходе от теплого состояния к более холодному (точнее 0 °С и ниже) может происходить сдвиг в определенных областях грунта.

Все факторы влияние обязаны быть приняты к сведенью в процессе определения основных рекомендаций по строительству и закладке фундамента под здание.

Виды грунта, подлежащие обязательному исследованию

В целом для обеспечения полной безопасности строительства и эксплуатации здания проведение исследований на деформации рекомендовано для всех видов грунта. Так можно определить возможные сложности, которые повлияют на эксплуатацию и строительство объекта. Проведение обязательных испытаний на деформации согласно государственного стандарта определено для:

  • крупнообломочных грунтов;
  • песков;
  • глинистых пород;
  • органоминеральных грунтов;
  • органических грунтов;
  • засоленных грунтов.

Данные виды грунта являются особо подверженными для деформаций своих несущих характеристик. Это связано с их особенностями проявления физических свойств при возникновении внешних факторов. Крупнообломочные и пески не имеют высокой прочности и для них характерен сдвиг под нагрузкой, а это мгновенно вызывает разрушение фундамента, проседание и перекос стен и как следствие полное разрушение. Также все перечисленные виды грунта особо подвержены изменению своих свойств при намокании. Все грунты имеют либо не высокую плотность, что при намокании приводит к провалам, либо в них присутствуют растворимые примеси. Именно поэтому точное определение деформационных характеристик грунтов данной категории является обязательным. После исследования разрабатывается список рекомендаций по устранению возможных проседаний и уплотнению грунта. Только основываясь на полноценное исследование, производится план мероприятий по предотвращению низких показателей прочности грунта.

Также обязательным является проведение данных испытаний для строительства высотных многоэтажных зданий, у которых повышенная нагрузка конструкции и увеличенная нагрузка горизонтального и вертикального воздействия. При неучтенных обстоятельствах с плотностью и несущей способностью грунта, фундамент может не соответствовать требуемой нагрузке. Такая ситуация может привести к обрушению или завалу здания на бок. Попытка сэкономить может привести не только к потере объекта, но и к потере человеческих жизней.

Наша работа

Компания «Геодата» предлагает исследование деформационных исследований грунта , а также весь спектр инженерно-геодезических изысканий на индивидуальных условиях. Благодаря большому опыту работы и крепким партнерским связям мы разработали гибкую систему цен, которые подойдут каждому. Работа выполняется только профессионалами свое дела, а в компанию приходят из лучших университетов страны.

Мы производим весь комплекс изысканий согласно установленным государственным стандартом с передачей всех необходимых заключений и документации во многих регионах страны.

Если у Вас есть к нам вопросы, просто свяжитесь с нами по указанному номеру или напишите на нашу электронную почту. Также Вы всегда можете заказать звонок с сайта, и наши специалисты проконсультируют Вас по всем интересующим вопросам.

Деформационные и прочностные свойства грунтов и их характеристики.

Сжимаемость грунтов характеризует их способность деформироваться без разрушения под влиянием внешней нагрузки. Деформационные свойства грунтов характеризуются модулем общей деформации Е , коэффициентом Пуассона, коэффициентами сжимаемости и консолидации, модулями сдвига и объемного сжатия. Сжимаемость дисперсных грунтов под нагрузкой обусловлена смещением минеральных частиц относительно друг друга и соответственно уменьшением объема пор.

Прочность грунтов определяется их сопротивляемостью сдвигу , которое можно описать линейной зависимостью Кулона

τ = p tgφ + c ,

где τ – сопротивление сдвигу, МПа; р – нормальное давление,МПа; tg φ – коэффициент внутреннеготрения; φ – угол внутреннего трения, град; c сцепление,МПа.

Величины φ и c необходимы для инженерных расчетов прочности и устойчивости.

Прочность скальных грунтов определяется преимущественно их структурными связями, т.е. сцеплением, но в наибольшей меретрешиноватостью.

Временное сопротивление скального грунта одноосному сжатию (предел прочности на сжатие) является важной классификационной характеристикой, по которой проводится отнесение грунта к скальному (> 5 МПа) или нескальному (< 5 МПа).

Химико-минеральный состав, структуры и текстуры грунтов, содержание органического вещества определяют в геологических лабораториях, оснащенных необходимой аппаратурой (рентгеноэлектронный микроскоп и т. д.). Физико-механические свойства грунтов изучают в грунтоведческих лабораториях и в полевых условиях на будущих строительных площадках. Особое внимание при этом обращается на достоверность получаемых результатов .

По каждой характеристике грунтов выполняется несколько определений и проводится их статистический анализ. Для любого ИГЭ определений должно быть не менее трех.

Грунтоведческая лаборатория. Образцы грунтов для лабораторных исследований отбираются по слоям грунтов в шурфах и в буровых скважинах на объектах.

В лабораторию образцы грунтов доставляют в виде монолитов или рыхлых проб. Монолиты - это образцы грунтов с ненарушенной структурой, которые должны иметь размеры 20 х 20 х 20 см. У пылевато-глинистых грунтов нужно сохранять природную влажность за счет водонепроницаемой парафиновой или восковой оболочки на их поверхности В рыхлых грунтах (песок, гравий и т. д.) образцы отбираются массой не менее 0,5 кг.

В лабораторных условиях можно определять все физико-механические характеристики, причем каждую согласно своему ГОСТ: природная влажность и плотность грунта – ГОСТ 5180-84, предел прочности – ГОСТ 17245-79, гранулометрический (зерновой) состав – ГОСТ 12536-79 и т. д. В лаборатории определяют влажность, плотность частиц грунта и некоторые другие.



Полевые работы. Исследование грунтов в полевых условиях дает преимущество перед лабораторным анализом, поскольку позволяет определять все значения физико-механических характеристик при естественном залегании грунтов без разрушения их структуры и текстуры, с сохранением режима влажности. При этом моделируется работа массивов грунтов в основаниях зданий и сооружений. Такие исследования грунтов в последние годы используют все больше.При этом совершенствуется техническая оснащенность, применяютсяЭВМ. Экспресс-методы позволяют быстрее получать свойства грунтов. Чтобы прогнозировать поведение массивов грунтов на период эксплуатации зданий и сооружений, целесообразно разумно сочетать лабораторные и полевые исследования.

Среди методов деформационных испытаний грунтов на сжимаемость следует считать эталонным метод полевых штамповых испытаний (ГОСТ 20278-85). Результаты других методов испытаний, как полевых (прессиометрия, динамическое и статическое лидирование), так и лабораторных (компрессионные и стабилометрические) обязательно должны сопоставляться с результатами штамповых испытаний.

При определении прочностных характеристик грунтов наиболее достоверные результаты дают полевые испытания на срез целиков грунта непосредственно на строительной площадке(ГОСТ 23741-79). Из-за высокой стоимости и трудоемкости эти работы проводят толькодля сооружений I уровня (класса) ответственности. К ним относятся здания и сооружения, имеющие большое хозяйственное значение, социальные объекты и требующие повышенную надежность (главные корпусы ТЭС. АЭС, телевизионные башни, промышленные трубы выше 200 м, здания театров, цирков, рынков, учебных заведений и т, д.).

Для других случаев строительства (II и III класс сооружений) достаточно надежные показатели с и φ получают в результате лабораторных испытаний грунтов в приборах плоского среза (ГОСТ 12248-78) и трехосного сжатия (ГОСТ 26518-85).

Прочностные характеристики можно также определять по методу лопастного зондирования, результаты которого при проектировании ответственных сооружений сопоставляют со сдвиговыми испытаниями для обеспечения достоверности результатов.

Деформационные испытания грунтов. Сжимаемость грунтов изучают методами штампов, прессиометрами, динамическим и статически зондированием.

Метод ш т а м п о в . В нескальных грунтах на дне шурфов или в забое буровых скважин устанавливают штампы, на которые передаются статические нагрузки (ГОСТ 20276-85). Штамп в шурфе это стальная или железобетонная круглая плита площадью 5000 см 2 . Для создания под штампом заданного давления применяют домкраты или платформы с грузом (рис. 49).

Осадку штампов измеряют прогибомерами. В шурфе на отметке подошвы штампа и вне его отбирают образцы грунтов для параллельных лабораторных исследований. Штамп загружают ступенями в зависимости от вида грунта и его состояния, выдерживая до стабилизации деформаций. В итоге испытания строят графики зависимостей осадки штампа от давления и от времени по ступеням нагрузки.После этого по формуле вычисляют модуль деформации грунта Е , МПа.

Штамп в буровой скважин е. Испытание грунтов проводят в скважине диаметром более 320 мм глубиной до 20 м. На забой скважины опускают штамп площадью 600 см 2 . Нагрузка на штамп передается через штангу, на которой располагается платформа с грузом. Модуль деформации также определяют по формуле.

Прессиометрические исследования проводят в глинистых грунтах. Прессиометр представляет собой резиновую цилиндрическую камеру, опускаемую в скважину на заданную глубину и расширяемую давлением жидкости или газа. При создаваемых давлениях замеряют радиальные перемещения стенок скважины, что позволяет определять модуль деформации и прочностные характеристики грунта.

Рис. 49. Определение сжимаемости грунтов штампами:

а, б – шурфы; в – буровая скважина; 1 – штампы; 2 – домкрат;

3 – анкерные сваи; 4 – платформа с грузом; 5 - штанга

Зондирование (или пенетрация ) используется для изучения толщ грунтов до глубины 15 – 20 м. По сопротивлению проникновения в грунт металлического наконечника (зонда) определяют плотность и прочность грунтов и их изменчивость в вертикальном разрезе. Зондирование относится к экспресс-методам определения механических свойств песчаных, глинистых и органогенных грунтов, которые не содержат или имеют мало примесей щебня или гальки. По способу погружения наконечника различают зондирование динамическое и статическое . При статическом зондировании конус в грунт задавливается плавно, а при динамическом его забивают молотом.

Статическое и динамическое зондирования позволяют:

Расчленить толщу грунта на отдельныеслои;

Определить глубину залегания скальных и крупнообломочных грунтов;

Установить приблизительно плотность песков, консистенцию глинистых грунтов, определить модуль деформации;

Оценить качество искусственно уплотненных грунтов в насыпях и намывных образованиях;

Измерить мощность органогенных грунтов на болотах.

На рис. 50 показана пенетрационно-каротажная станция.

Рис. 50. Пенетрационно-каротажная станция:

1 – зонд-датчик; 2 – штанга; 3 – мачта; 4 – гидроцилиндр; 5 – канал связи; 6 – аппаратная станция; 7 – пульт управления

Прочностные испытания грунтов. Сопротивление грунтов сдвигу определяется предельными значениями напряжений при разрушении. Опыты проводят в котлованах, оставляя столбчатые целики ненарушенного грунта, к которым прикладывают сжимающие и сдвигающие усилия. Для правильного определения внутреннего трения и удельного сцепления опыт проводят не менее чем на трех целиках при различных сжимающих усилиях. Сдвиг производят также при вращении крыльчатки, которая представляет собой четырехлопастной прибор. Его вдавливают в грунт и поворачивают, измеряя при этом крутящий момент, по которому рассчитывают сопротивление сдвигу.

Опытные строительные работы . При строительстве объектов I уровня ответственности (класса) полевые исследования грунтов приобретают особо важное значение, поэтому прибегают к опытным работам.

Опытные сваи . На строительной площадке погружают инвентарную сваю и наблюдают за характером ее погружения и сопротивляемостью грунта. Прикладывая к свае нагрузки и измеряя осадки при каждой ступени определяют несущую способность грунта в условиях природной влажности и при замачивании . Результаты испытаний сравнивают с расчетными данными на базе лабораторных исследований грунта.

Опытные фундаменты . Устраивают фундаменты будущего здания в натуральную величину и на проектную глубину. На фундамент прикладывают нагрузку как от будущего здания и ведут наблюдения за сжатием грунта основания. Так определяют реальную несущую способность грунта и осадку будущего здания.

Опытные здания . Количественную оценку просадочных свойств лессов дают по данным лабораторных и полевых испытаний грунтов. В реальных условиях под возведенными зданиями в натуральную величину лессовое основание насыщают водой и проводят наблюдения за характером развития процесса, определяют значения просадок и оценивают состояние конструкций здания. Аналогичные опытные работы выполняют и при оценке динамических воздействий на конструкции зданий и основания.

Обработка результатов исследований грунтов . Оценку свойств массивов грунтов проводят на основе физико-механических характеристик в результате лабораторных исследований отдельных образцов грунтов и полевых работ на территории массива. Полученные в лаборатории и в поле характеристики отвечают только тем местам, где были отобраны образцы и проведены полевые испытания грунтов. В связи с этим разрозненные результаты исследований и нормативные показатели необходимо обобщить, т. е. статистически обработать с целью получения усредненных значений и последующего использования в расчетах оснований.

Стационарные наблюдения при инженерно-геологических и гидрогеологических исследованиях проводят для оценки развития неблагоприятных геологических процессов (карста, оползней и др.), режима подземных вод и температурного режима На выбранных характерных участках для наблюдений устанавливают сеть реперов и ведут инструментальные наблюдения за их перемещением и т. д. Измерения выполняют в период эксплуатации зданий и сооружений, но они могут быть начаты и в периодих проектирования. Продолжительность работ – до 1 года и более.

В области линейного сжатия деформирование грунтов, как и любых других материалов, характеризуется модулем деформации Е и коэффициентом бокового расширения ν, называемым коэффициентом Пуассона. Под фундаментами боковое расширение грунта стеснено окружающим массивом и мало влияет на деформации основания. Основным показателем деформирования следует считать модуль деформации, который является эмпирическим коэффициентом в известной из сопротивления материалов формуле Гука. Для однородных материалов опытные величины Е имеют небольшой разброс и рассматриваются как константа. Сжимаемость грунтов в пределах слоя (ИГЭ) меняется в широком интервале. Поэтому их модули деформации определяют на каждой строительной площадке по результатам разных видов полевых , лабораторных испытаний, или по показателям физического состояния . Способ испытаний выбирается в зависимости от уровня ответственности проектируемого здания.

Полевые испытания грунтов принято проводить инвентарным штампом, являющимся моделью фундамента. Используемое в полевых условиях оборудование, измерительные приборы, порядок проведения испытаний и обработки результатов измерений описаны в ГОСТ 20276-99. Штамп 1 (рис. 3.1) устанавливается в котловане или горной выработке, плотно притирается к поверхности грунтового массива и загружается отдельными ступенями нагрузки гидравлическим домкратом 3, упирающимся в анкерную балку 5, соединенную с блоками 4, или штучными грузами. Ступени нагрузки принимаются в зависимости от вида и состояния грунта и выдерживаются до стабилизации осадки основания. Измерение осадки производится прогибомерами или, что удобнее, индикаторами 7, закрепленными на неподвижной основе 8. Конструкции установок для нагружения штампа и схемы измерения осадок могут быть и иными. По результатам испытаний строится график (рис.3.2), на горизонтальной оси которого указываются давления, а по вертикальной оси откладываются измеренные осадки штампа. Построенный по экспериментальным точкам эмпирическая кривая чаще представляет ломаную линию, которую в некотором интервале давлений ∆р, допуская небольшую погрешность, заменяют осредненной прямой, построенной методом наименьших квадратов или графическим методом. За начальные значения р g и s 0 (первая точка, включаемая в осреднение) принимают давление от собственного веса грунта на глубине установки штампа, и соответствующую ему осадку; а за конечные значения р к и s к - значения давления и осадки, соответствующие точке на прямолинейном участке графика. Количество включаемых в осреднение точек должно быть не менее трех. Модуль деформации грунта Е вычисляют для линейного участка графика по формуле



(3.1)

где v - коэффициент Пуассона, принимаемый равным 0,27 для крупнообломочных грунтов; 0,30 - для песков и супесей; 0,35 - для суглинков; 0,42 - для глин;

К 1 - коэффициент, принимаемый равным 0,79 для жесткого круглого штампа;

D – диаметр штампа.

Остальные обозначения указаны на рис. 3.2.

Согласно нормам проектирования СНиП 2.02.01-83* количество опытов для каждого выделенного инженерно-геологического элемента должно быть не менее 3. Модули деформации грунтов, вычисленные по формуле (3.1), являются наиболее достоверными. Недостаток метода в том, что затраты на испытания штампов относительно высоки.

Лабораторные испытания . В лабораторных условиях проводят испытания образцов грунта в приборах, обычно исключающих боковое расширение. Такой метод испытаний принято называть компрессионными сжатием , а конструкции приборов для испытаний компрессионными приборами или одометрами. Устройство одометра показано на рис 3.3, порядок испытаний изложен в ГОСТ 12248-96. Образец испытываемого грунта 11, заключенный в рабочее кольцо 3, устанавливается в приборе на перфорированный вкладыш 6. Сверху на него укладывается перфорированный металлический штамп 5, предназначенный для равномерного распределения силы N , передаваемой на образец с помощью специального нагрузочного устройства. Под действием давления, увеличивающегося ступенями по 0.0125 МПа и более, штамп вследствие сжатия образца оседает. Его перемещение, продолжающееся довольно продолжительное время, измеряется двумя индикаторами 8 с точностью до 0.01 мм. При сжатии образца объёма пор грунта уменьшается и из них выдавливается вода, которая отводится через отверстия в штампе и вкладыше.

Уплотнение грунта принято характеризовать уменьшением коэффициента пористости. Первоначальное значение коэффициента пористости е о определяется по формуле, приведенной в табл. 1.3. На каждой ступени нагрузки коэффициент пористости вычисляется по формуле

е i = е 0 - (1+ е 0 ) (3.2)

где s i – величина измеренного перемещения (осадки) штампа при давлении р i ;

h – высота образца грунта.

Изменения коэффициента в зависимости от давления показано на рис. 3.4. Экспериментальные точки на графике соединяются прямыми отрезками. Построенная эмпирическая зависимость в общем случае представляет ломаную линию, которую принято называть компрессионная кривая . Для интервала давлений от р н до р к , принимаемых из таких же соображений, как и для штамповых испытаний, участок компрессионной кривой заменяется прямой. Такая замена позволяет вычислить параметр деформативности, называемый коэффициент сжимаемости т 0:

т 0 = (3.3)

По смыслу коэффициент сжимаемости есть тангенс угла наклона осредненной прямой к горизонтальной оси.

Модуль деформации определяется по коэффициенту сжимаемости из выражения:

Е к = (3.4)

где β – коэффициент, зависящий от коэффициента бокового расширения ν, вычисляется по формуле

где v - коэффициент поперечной деформации, принимаемый равным: 0,30-0,35 - для песков и супесей; 0,35-0,37 - для суглинков; 0,2¾0,3 при I L < 0; 0,3¾0,38 при 0 £ I L £ 0,25; 0,38¾0,45 при 0,25 < I L £ 1,0 - для глин (меньшие значения v принимают при большей плотности грунта).

Поскольку грунты неоднородны, то модули деформации грунтовых слоев находят как среднее из результатов не менее 6 опытов.

По ряду причин величины Е к оказываются значительно заниженными. Для зданий I и II уровней ответственности значения модуля деформации, устанавливаемые по результатам компрессионных испытаний, определяют по формуле

Е= т к Е к (3.6)

Эмпирический коэффициент т к находят путем сопоставления полевых испытаний штампов с лабораторными испытаниями.

т к = (3.7)

Значения т к для грунтов разного вида и состояния варьируют в широком интервале. Их ориентировочные значения на практике принимают из табл. 5.1 свода правил по проектированию и устройству фундаментов СП 50-101-1004, или по таблицам, составленным для грунтовых условий отдельных регионов.

Образцы грунта можно испытывать в лабораторных условиях по более сложной схеме трехосного сжатия. Порядок испытания изложен в ГОСТ 12248-96. Такие испытания позволяют устанавливать не только модуль деформации, но и прочностные характеристики, описанные в гл. 5. В практике трехосные испытания не находят широкого применения. Трудности при их проведении возрастают, а получаемые величины модуля деформации нужно корректировать, как и при компрессионных испытаниях.

Много данных о грунтах природного залегания позволяет получать испытания статическим зондированием по ГОСТ 19912-2001. Современные зонды состоят из муфты трения и наконечника (конуса). Зондирование ведут вдавливанием в грунтовый массив зонда с одновременным измерением непрерывно или через 0,2 м сопротивлений f s и q c (рис. 3.5), которые могут записываться на магнитный диск и обрабатываться на компьютере.Вместе с бурением и другими видами испытаний статическое зондирование позволяет более достоверно решать многие задачи. В их число входят следующие вопросы:

выделение инженерно-геологических элементов (ИГЭ) и установление их границ;

оценка пространственной изменчивости состава и свойств грунтов;

количественная оценка характеристик физико-механических свойств грунтов.

Количественная оценка модуля деформации и других показателей физико-механических свойств грунтов производится на основе обоснованных статистических зависимостей между ними и показателями сопротивления грунта внедрению зонда. Обычно используется зависимость вида Е=f (q c ). Параметры такой зависимости целесообразно устанавливать для региональных видов грунтов. При их наличии статическое зондирование позволяет значительно снижать затраты на испытания грунтов.

Для нахождения модуля деформации продолжает использоваться проём, основанный на его связи с показателями физического состояния. Связь носит вероятностный характер. Однако на её основе составлены таблицы, из которых модуль деформации принимается для глинистых грунтов различного происхождения по показателю текучести I L и коэффициенту пористости е . Для сыпучих грунтов модуль деформации берется по гранулометрическому составу и коэффициенту пористости е . Таблицы приведены в нормах проектирования, сводах правил, в справочниках, и носят рекомендательный характер. Пользоваться ими допускается только для предварительных расчетов.

Вопросы для самопроверки.

1 Какими показателями характеризуется деформирование грунтов в области линейного сжатия?

2. Что означает по смыслу модуль деформации грунта?

3. Какие испытания проводят для определения модуля деформации?

4. Сколько испытаний штампов необходимо провести для определения модуля деформации однородного слоя (ИГЭ)?

5. Сколько следует провести компрессионных испытаний для определения модуля деформации ИГЭ?

6. Как корректируют результаты компрессионных испытаний грунтов?

7. Сущность статического зондирования грунтов.

8. Можно ли принимать модуль деформации грунтов по показателям физического состояния?


ТЕМА 4

Расчет осадки основания .

Расчет осадки фундамента в инженерной практике производится на основе решения Гука для определения укорочения или растяжения упругого стержня, нагруженного осевой силой.

При приложении силы N укорочение стержня (рис. 4.1 а ), как следует из теории Гука, вычисляется из выражения

s = N L / А Е .

Если принять, что σ=N / А (А – площадь поперечного сечения стержня), то

s = σ L / Е . (4.1)

Произведение σL в этой формуле имеет простой геометрический смысл, означая, по сути, площадь прямоугольной эпюры напряжений.

По аналогии со стержнем осадка фундамента s (рис. 4.1 б ) понимается как укорочение некоторого условно выделяемого под подошвой столба грунта высотой Н ос . Вычисление его величины s по формуле (4.1) осложняется следующими обстоятельствами: напряжения σ z по горизонтальным сечениям и по высоте столба распределяются неравномерно (эпюры напряжений по ним криволинейны); высоту столба Н ос , поскольку её не измерить, нужно отыскивать каким-либо способом; в пределах Н ос могут находиться слои различной сжимаемости. Перечисленные проблемы приближенно решены в инженерном расчете осадки методом послойного суммирования.

Суть метода заключается в том, что осадку основания s вычисляют на основе формулы (4.1) как сумму деформаций однородных по сжимаемости участков, на которые разделяют грунтовый массив от подошвы до нижней границы сжимаемой толщи. Такой прием аналогичен известному способу приближенного определения площадей криволинейных фигур.

Расчет производится в следующей последовательности.

· Определяют давление на уровне подошвы фундаментов от собственного веса грунта:

σ zg = g 1 d 1 (4.2)

· Определяют дополнительное давление от нагрузки на фундамент, возникшее под подошвой сверх давления от собственного веса грунта:

р о = р н σ zg (4.3)

· Грунтовый массив под подошвой условно разделяют на однородные по сжимаемости участки (рис. 4.2) толщиной h i £ 0.4b . Если в пределах элементарного участка оказывается граница между грунтовыми слоями, то участок делят по ней на две части (на рисунке точка 2 взята на границе между ИГЭ 1 и ИГЭ 2).

·В точках на границах участков вычисляют дополнительные напряжения

σ zi = a р о , (4.4)

где a - коэффициент, принимаемый по табл. 2.3 в зависимости от соотношения сторон подошвы h =l/b и относительной глубины нахождения точки ξ =2z i /b (z i –расстояние от подошвы фундамента до рассматриваемой точки, i – номер точки), и напряжения от собственного веса грунта

σ zqi = σ zg +∑h i g i . (4.5)

· Отыскивают положение границы уплотняемой толщи, проверяя эмпирическое условие

σ zi k σ zqi , (4.6)

где k =0.2 при модуле деформации Е ≥5 МПа, и k =0.1 при Е< 5 МПа.

Расхождение между правой и левой частями условия допускается не более 5 кПа.

· По вычисленным в точках значениям напряжений строят эпюру напряжений (рис. 4.3) и подсчитывают средние давления σ z с i для всех участков в пределах сжимаемой толщи

σ z с i = (σ z (i -1) + σ zi )/2, (4.7)

где σ z (i -1) и σ zi – давления на верхней и нижней границе i -го участка.

· Вычисляют осадку фундамента как сумму деформаций элементарных участков в пределах от подошвы до границы сжимаемой толщи

s = 0.8åσ z с i h i / Е i . (4.8)

В этой формуле сумма произведений åσ z с i h i означает приближенную площадь криволинейной эпюры напряжений.

Исходные данные о глубине заложения и размерах подошвы фундаментов, необходимые для выполнения расчетов, указаны в табл. 4.1.

Таблица 4.1

Данные о фундаментах Номер варианта
Глубина заложения d 1 , м 1.5 2.8 2.1 2.4 1.8 2.5 3.3 2.9 2.3 3.1 2.2
Давление, кПа
ширина b м 1.6 2.4 2.1 2.7 1.8 1.5 2.3 1.6 1.9 2.2 2.9 3.2
длина l , м 2.4 2.7 3.3 2.4 2.1 3.4 3.2 2.8 4.1 4.5 4.2
Ширина b м 1.6 2.4 2.1 2.7 1.8 1.5 2.3 1.6 1.9 2.2 2.9 3.2
Данные о фундаментах Номер варианта
Глубина заложения d 1 , м 3.1 2.2 2.5 3.3 2.9 2.3 3.1 2.2 1.5 2.8 2.1 2.4
Давление, кПа
Размеры подошвы отдельного фундамента, м
ширина b м 2.5 3.3 2.9 1.5 2.8 2.1 2.3 3.1 2.2 2.7 1.8 1.5
длина l , м 3.3 4.2 2.4 3,6 2.7 3.3 2.4 4.5 4.5 4.1 1.8 2.1
Размеры ленточного фундамента
Ширина b м 2.5 3.3 2.9 1.5 2.8 2.1 2.3 3.1 2.2 2.7 1.8 1.5

Залегание, номера грунтовых слоев (ИГЭ), значения показателей ИГЭ принимаются для заданного варианта по рис. 1, табл. 1 и табл.2.

Указанные в таблице 4.1 давления на грунт относятся к отдельным и ленточным фундаментам.

При самостоятельном изучении темы следует выполнить расчеты осадки отдельного и ленточного фундаментов .

Пример 4.1 .

b = 1,8 м, l = 2,5 м, d 1 = 1,8 м, р н = 240 кПа. Сведения о грунтах приведены на рис.4.3.

Бытовое давление на отметке заложения фундамента

σ zg = g 1 d 1 = 19*1,8 = 34,2 кПа .

Дополнительное давление под подошвой фундамента

р о = р н σ zg = 240 – 34,2 = 205,8 кПа .

Толщина элементарного слоя

h=0.4b =0,4 *1,8 = 0,72 м .

Отношение сторон подошвы фундамента

h = l/b =2,5 / 1,8 = 1,39 ≈1,4.

1-я точка (i = 1) , z 1 = 0,72 м ;

x =2z 1 /b = 2 *0,72 /1,8 = 0,8, a= 0,848 ;

σ z 1 =a р о = 0.848 *205.8 = 174.5 кПа.

σ z с1 = (205,8 + 174.5) / 2 = 190,15 кПа;

Напряжения от собственного веса грунта

σ zq 1 = σ zg +h 1 g 1 .= 34,2 + 0,72 *19 = 47,88 кПа.

2-я точка (i = 2). Если эту точку взять на 0,72 м ниже, она окажется во 2-м слое. Поскольку участок должен быть однородным по сжимаемости, то точку следует расположить на границе между слоями. Следовательно, расстояние от подошвы до точки будет z 2 =1,05 м, а толщина второго участка составит

h 2 = 1.05 – 072 = 0,33 м:

x = 2 *1,05 / 1,8 = 1,17 , a=0,694 ,

σ z 2 = 0,694 *205,8 = 142,8 кПа ,

σ z с2 = (174.5 + 142,8)/2=158,6 кПа ,

σ zq 2 = 47,88 + 0,33 *19 = 54,15 кПа .

3-я точка (i = 3). В целях удобства пользования таблицей, чтобы избежать интерполирования при нахождении из неё значений a, примем z 3 =1,44 м. Толщина третьего участка составит h 3 = 1.44 – 1.05 = 0,39 м.

x = 2*1,44/ 1,8 =1,6; a=0,532 ;

σ z 3 = 0,532 *205,8 = 109,5 кПа;

σ z с3 =(142,8+109,5)/2 = 126,1 кПа;

σ zq 3 =54,15+0,39 *20,3 = 62,1 кПа.

4-я точка (i = 4). Толщина участка 0,72 м , z = 2,16 м.

x = 2 *2,16 / 1,8 = 2,4 ; a=0,325;

σ z 4= 0,325 *205,8 = 66,9 кПа;

σ z с4 =(109,5 + 66,9)/2 = 88,2;

σ zq 4 = 62,1+ 0,72 *20,3 = 76,7 кПа .

Для точек, расположенных ниже, напряжения подсчитываются аналогичным образом. Результаты всех проделанных вычислений приведены в табл. 4.2.

В 7-ой точке левая и правая части условия σ zi ≈0,2σ zqi (в таблице выделены серым цветом) отличаются на 2,39 кПа, менее чем на 5 кПа. Следовательно, границу уплотняемой зоны можно принять в этой точке на глубине 4,32 м от подошвы фундамента. Грунты в пределах этой глубины и являются основанием.

Таблица 4.2

Номер точки Номер слоя Z в м h i в м x=2z/b a σ zi в кПа σ zс i в кПа σ zq в кПа 0,2σ zq в кПа
1,000 205,8 34,2 -
0,72 0,72 0,8 0,848 174,5 190,1 47,88 9,6
1,05 0,33 1,17 0,694 142,8 158,6 54,15 10,83
1,44 0,39 1,6 0,532 109,5 126,1 62,1 12,42
2,16 0,72 2,4 0,325 66,9 88,2 76,7 15,34
2,88 0,72 3,2 0,21 43,22 55,06 91,3 18,26
3,6 0,72 4,0 0,145 29,8 36,51 105,9 21,18
4,32 0,72 4,8 0,105 21,61 25,7 120,0 24,0

Осадка равна

ѕ=0,8[(190,1 *0,72+158,6 *0,33)/7200+(126,1 *0,39+88,2 *0,72+55,06 *0,72+36,51 *0,72)/12000 ++25,7 *0,72/16000] = 0,034 м .=3,4 см .

Осадка ленточного фундамента рассчитывается в такой же последовательности. При одинаковом давлении на грунт и одинаковой ширине подошвы вычисленные осадки оказываются разными. Для выяснения причины этого сравнить эпюры напряжений.

Заключение .

Не следует упускать из виду, что выделяемый под фундаментами грунтовый столб представляет собой модель основания, деформации которой устанавливаются на основе гипотез о распределении напряжений в грунтовом массиве, расположении границы деформируемой зоны, сжимаемости грунтов. Из-за принятых упрощений параметры модели, используемые в расчетах, отличаются от параметров реального грунта. В итоге вычисленные осадки на практике обычно не совпадают с фактическими осадками фундаментов. Расчеты осадки по методу послойного суммирования, поэтому, являются приближенными.

Метод послойного суммирования, используя метод угловых точек определения напряжений, можно применять при определении осадки соседних фундаментов.

Нужно отметить, что осадки фундаментов возникают не сразу после приложения нагрузки, а медленно увеличиваются во времени. Продолжительность деформирования грунтов можно приближенно рассчитывать или принимать из наблюдений.

Вопросы для самопроверки.

1. Какое решение взято в основу расчета осадки?

2. Какие сложности возникают при расчетах осадки фундаментов?

3. В какой последовательности ведется расчет осадки?

4. Как определяется положение границы уплотняемой зоны?

5. Как учитывается различная сжимаемость грунтов основания?

6. Какова достоверность метода послойного суммирования?

Основными показателями механических свойств грунтов, определяющими несущую способность оснований, а также их деформацию, является угол внутреннего трения , удельное сцеплениеС , модуль деформации Е . Для определения механических свойств грунтов можно воспользоваться таблицами приложения 1 СНиП 2.02.01-83*. Для песчаных грунтов нормативные значении сцепления
(кПа), угла внутреннего трения(град.) и модуля деформацииЕ (МПа) (табл.1.2.1) определяют в зависимости от типа грунта и коэффициента пористости. Для пылевато-глинистых грунтов величины
,(табл.1.2.2) иЕ (табл.1.2.3) определяются в зависимости от типа грунта, показателя текучести и коэффициента пористости. Искомое нормативное значение показателя механических свойств грунта определяют, используя для этого в необходимых случаях линейную интерполяцию по коэффициенту пористости. Если значения е, грунтов выходят за пределы, предусмотренные в таблице, характеристики
,иЕ следует определять по данным непосредственных испытаний этих грунтов в полевых или лабораторных условиях. Допускается в запас надежности принимать характеристики
,иЕ по соответствующим нижним пределам е, , если грунты имеют значения величин е, меньше этих величин.

Таблица 1.2.1. – Извлечение из табл.1 прил.1 СНиП 2.02.01-83*. Нормативные значения удельного сцепления с n j n , град. и модуля деформацииЕ , МПа (кгс/см 2), песчаных грунтов четвертичных отложений

Песчаные грунты

Характеристика грунтов при коэффициенте пористости е , равном

Гравелистые и крупные

c n

j n

Средней крупности

c n

j n

c n

j n

Пылеватые

c n

j n

Таблица 1.2.2. – Извлечение из табл.2 прил.1 СНиП 2.02.01-83*.Нормативные значения удельного сцепления с n , кПа (кгс/см 2), угла внутреннего тренияj n , град. пылевато-глинистых нелессовых грунтов четвертичных отложений

Обозначения характеристик грунтов

Характеристики грунтов при коэффициенте пористости е , равном

0 £ I L £ 0,25

c n

j n

0,25 < I L £ 0,75

c n

j n

Суглинки

0 < I L £ 0,25

c n

j n

0,25 < I L £ 0,5

c n

j n

0,5 < I L £ 0,75

c n

j n

0 < I L £ 0,25

c n

j n

0,25 < I L £ 0,5

c n

j n

0,5 < I L £ 0,75

c n

j n

Таблица 1.2.3. Извлечение из табл.3 прил.1 СНиП 2.02.01-83*.Нормативные значения модуля деформации пылевато-глинистых нелессовых

Происхождение и возраст грунтов

Наименование грунтов и пределы нормативных значений их показателя текучести

Модуль деформации грунтов Е , МПа (кг/см 2), при коэффициенте пористости е , равным

Четвертичные отложения

Аллювиальные,

Делювиальные,

Озерно-аллювиальные

0 £ I L £ 0,75

Суглинки

0 £ I L £ 0,75

0,25 < I L £ 0,5

0,5 < I L £ 0,75

0 £ I L £ 0,75

0,25 < I L £ 0,5

0,5 < I L £ 0,75

Флювиоглянциальные

0 £ I L £ 0,75

Суглинки

0 £ I L £ 0,75

0,25 < I L £ 0,5

0,5 < I L £ 0,75

Моренные

Суглинки

I L £ 0,5

Юрские отложения оксфордского яруса

0,25 £I L £ 0

0 < I L £ 0,25

0,25 < I L £ 0,5

Прочностью грунтов называется их способность сопротивляться разрушению. В общем случае разрушение грунта может быть вызвано силами разной природы (механическими, термическими, электрическими и др.), поэтому выделяют соответствующие типы прочности грунтов по природе разрушающих воздействий. В инженерно-геологических целях в первую очередь важно знать механическую прочность грунтов, т. е. их способность сопротивляться разрушению под влиянием механических напряжений. Если деформационные характеристики грунтов определяются при напряжениях, не приводящих к разрушению (т. е. докритических), то параметры прочности грунтов соответствуют критическим разрушающим напряжениям и определяются при предельных нагрузках, вызывающих либо разделение тела на части (для упругих грунтов), либо необратимое изменение формы тела в результате деформации пластического течения (для пластичных грунтов).

Физическая природа прочности грунтов определяется силами взаимодействия между их структурными элементами - кристаллами, зернами, обломками, агрегатами, частицами, т. е. зависит от типа и особенностей структурных связей. Чем больше силы взаимодействия между структурными элементами грунта, тем выше его прочность в целом. Поэтому скальные грунты, среди которых преобладают прочные химические (кристаллизационные и цементационные) структурные связи, имеют большую прочность, чем дисперсные грунты со слабыми физическими и физико-химическими структурными связями.

Поскольку на испытываемый образец грунта могут действовать разные напряжения (нормальные, касательные, объемные или их совокупности), то в качестве меры его прочности могут быть выбраны разные виды критических напряжений или их соотношения, именно такие меры являются параметрами прочности.

К настоящему времени известно более двух десятков условий прочности, разработанных для описания поведения глинистых и песчаных грунтов. Согласно классификации, предложенной W.-F. Chen, все напряженные состояния грунтов можно подразделить на одно- и двупараметрические модели. К однопараметрическим моделям относятся условия прочности Треска, Мизеса, Lade, Duncan. К двупараметрическим моделям относятся условия, предложенные Мором-Кулоном, Drucker-Prager, Р. Lade, М.В. Малышевым и др. После публикации W.-F. Chen прошло много лет (1984 г.), и за это время были предложены условия прочности или модели грунта, которые можно назвать многопараметрическими. В наиболее сложные из них входят до 6 независимых параметров, определяемых из очень сложных и дорогостоящих опытов. Несмотря на многообразие условий прочности, на практике применяются лишь несколько из них. Это в первую очередь условие прочности Мора-Кулона, Кэп-модели и многоповерхностные модели (Prevost, 1977, 1985; Dafalias, 1985). Последние две фуппы моделей грунта более сложные и не позволяют получать решения в аналитическом виде, поэтому они используются в нелинейной механике и численном решении задач .

При оценке прочности грунтов чаще всего используют теорию предельного состояния, согласно которой определяют те или иные параметры критических (предельных) значений напряжений, которые может выдержать образец грунта без разрушения. Пределами прочности называются такие пределы, при превышении которых происходит разрушение грунта и он не воспринимает прикладываемых к нему усилий. Критические значения па- раметров соответствуют разным типам напряженного состояния грунта, в которых он может находиться и которые могут харакгеризоваться величинами главных напряжений σ1, σ2 и σ3 , причем σ1, σ2 и σ3 в качестве таковых состояний чаще всего рассматриваются (рис. 8.27):

  • плоскостной сдвиг (σ1 > 0, г > 0, рис. 8.27, а);
  • одноосное растяжение σ1 0, σ2 = σ3 = 0, рис. 8.27, б);
  • одноосное сжатие (когда σ1 > 0, σ2 = σ3 = 0, рис. 8.27, в)
  • трехосное сжатие (σ2 = σ3 ≠ σ1> 0, рис. 8.27 (г, д , е).

Рис. 8.27. Схемы опытов: па сдвиг (а): на одноосное растяжение (б); на одноосное сжатие (в): на трехостное сжатие: на определение недренированной прочности грунтов (г): дренированной прочности песчаных (д) и глинистых (е) грунтов

Прочностные характеристики дисперсных грунтов (угол внутреннего трения и удельное сцепление с) могут быть получены путем испытания грунтов лабораторными методами: на срез или трехосное сжатие, растяжение, но углу естественного откоса, вдавливанием штампа с шаровой или конусообразной поверхностью, а в полевых условиях - испытаниями на срез целиков грунта в шурфах или котлованах. Параметры прочностных свойств и лабораторные методы их определения, регламентируемые действующими нормативными документами, приведены в табл. 8.30.

Для водонасыщенных глинистых грунтов с показателем текучести //,>0,5, органоминеральных и органических грунтов, для которых подготовка целиков для полевых испытаний или отбор образцов для лабораторных испытаний затруднительны, прочностные характеристики (с„) для расчета оснований из этих грунтов в нестабилизированном состоянии могут быть определены полевым методом вращательного среза в скважинах или массиве.

Значения (рис песков и глинистых грунтов для сооружений II и III уровней ответственности могут быть определены полевыми методами поступательного и кольцевого среза в скважинах. При этом для сооружений 11 уровня ответственности полученные значения и с должны уточняться на основе их сопоставления с результатами параллельно проводимых испытаний того же грунта лабораторными методами на срез или трехосное сжатие, а в полевых условиях - испытаниями на срез целиков грунта в шурфах или котлованах.

Значения и с песков и глинистых грунтов могут быть определены методом статического зондирования . а песков (кроме пылеватых водонасыщенных) - методом динамического зондирования. Для сооружений I и II уровней ответственности полученные зондированием значения (рис должны уточняться на основе их сопоставления с результатами параллельно проводимых испытаний того же грунта лабораторными методами на срез или трехосное сжатие, а в полевых условиях - испытаниями на срез целиков грунта в шурфах или котлованах. В остальных случаях допускается определять значения (рис только по данным зондирования [ 114).

Испытания вращательным срезом крыльчаткой следует проводить для оценки максимальных значений сопротивления сдвигу с и органо-минеральных и органических грунтов и глинистых грунтов мягкопластичной, текучей консистенции в недренированных условиях. Методику испытаний и интерпретацию полученных результатов следует выполнять в соответствии с ГОСТ 20276-99 (или ASTM D2573, NEN 5106 при выполнении изысканий совместно с иностранными инвесторами или по их техническому заданию).

Определение прочностных характеристик грунтов в лабораторных условиях следует производить методом трехосного сжатия (ГОСТ 12248), а их результаты использовать для корректировки данных испытаний одноплоскостного среза . Другие виды напряженных состояний могут быть реализованы в приборах прямого и кольцевого сдвига (рис. 8.28, я), в установках с перекашиванием образца (рис. 8.28, б), при помощи лабораторных сдвигомеров-крыльчаток (рис. 8.28, в) и при испытаниях сплошных и полых цилиндрических образцов на кручение (рис. 8.28, г, д). Образцы грунта могут иметь форму: куба, параллелепипеда, сплошного или полого цилиндра, сплошной или полой катушки.

Таблица 8.30

Методы определения прочностных характеристик немерзлых грунтов

Окончание табл. 8.30

Рис. 8.28. Схемы и фотографии приборов:

а - кольцевого сдвига: б - прямого сдвига с перекашиванием образца; в - лабораторный вариант крыльчатки и полевой тестер-крыльчатка; г, д - схемы испытаний сплошных и полых цилиндрических образцов на кручение (81. 92]

Приборы кольцевого сдвига применяются для определения прочности грунтов как при малых, так и при больших сдвиговых деформациях (в сотни процентов). У большинства грунтов наблюдается уменьшение прочности с ростом деформации сдвига после достижения пикового состояния. Этот процесс можно зафиксировать в приборе кольцевого сдвига, а также с помощью прибора прямого среза при кинематическом нагружении образца. В приборе кольцевого сдвига (рис. 8.29), кроме значений максимального и предельного угла внутреннего трения, замеряется параметр остаточной прочности (р г, применяемый при расчетах устойчивости склонов, откосов котлованов, подпорных стен и при моделировании оползневых процессов или движения грунтов в зоне сброса по уже сформировавшейся плоскости скольжения. Главное преимущество испытаний на кольцевой сдвиг заключается в деформации сдвига с постоянной площадью образца в течение всего опыта, а также возможность выполнять испытания грунтов при деформации сдвига более 10...30 %, чего не позволяют приборы прямого среза или простого сдвига. Кроме того, в условиях кольцевого среза не меняется ориентация частиц в послепиковом состоянии, что характеризуется почти нулевым сцеплением и минимальным трением.

При испытаниях в приборе кольцевого сдвига грунт находится в двух кольцах (верхнее или нижнее), одно из которых вращается, а другое (верхнее или нижнее) лежит неподвижно. Опыт проводится при постоянном нормальном давлении, которое определяется по зависимости:

где Р - нагрузка от веса грузов, штампа и штанги; г 0 и г, - соответственно внутренний и наружный радиусы кольцевого штампа.

Касательное напряжение рассчитывается по величине крутящего момента М

Рис. 8.29. Срезные приборы, определяющие прямые и остаточные напряжения: а - схемы опыта с кольцевыми приборами; о - схема кольцевого прибора; в - фотография прибора кольцевого сдвига (производитель Wykeham Farrance)

Метод кольцевого сдвига дает возможность воссоздавать в лаборатории условия, аналогичные естественным, и получать очень точные значения остаточного сопротивления, которые зависят не только от величины нормального давления в плоскости сдвига, но и от скорости сдвига. Обычно при смещении склонов наблюдается скорость движения грунтовых масс от 5 см/год до 50 см/сут.

Устройства простого сдвига с перекашиванием образца (рис. 8.28, б) позволяют моделировать различные условия действия сдвигающих нагрузок. Результаты применяются при расчете устойчивости подводных склонов континентальных шельфов, характеризуемых слоистым залеганием глинистых грунтов; при прогнозе поведения грунтов под фундаментом морских платформ или рядом с боковой поверхностью свай. Установка предназначена для уплотнения образца дренирования и затем сдвига. Деформация сдвига вызывается горизонтальным смещением нижней части образца относительно верхней, кольца скользят друг по другу и при этом диаметр образца остается постоянным, поэтому любые изменения объема являются результатом вертикального движения верхнего прижимного устройства. На этапе сдвига во время испытания вертикальная высота образца поддерживается постоянной с помощью вертикального привода, соединенного обратной связью с датчиком смешения. Образцы грунта могут быть в форме цилиндра, прямоугольника или куба.

Преимущества данного прибора заключается в том, что если в условиях прямого среза разрушение образца грунта происходит вдоль заранее фиксированной горизонтальной плоскости, то в условиях простого сдвига разрушение будет проходить вдоль серии горизонтальных (или вертикальных) плоскостей сдвига по ослабленным участкам грунта с наименьшим сопротивлением. В отличие от испытаний на прямой срез (когда практически невозможно выдержать недренированные условия), при опытах в приборах прямого сдвига образец находится в резиновой оболочке, что позволяет проводить дренированные и недренированные испытания, сохраняя объем грунта, а также измерять поровое давление. Испытания в условиях простого сдвига позволяют определить не только параметры прочности, но и модуль сдвига G.

Испытания на прямой одноплоскостной или кольцевой сдвиг проводятся в основном для таких условий устойчивости грунтов, когда возникают явные плоскости разрыва или когда прочностные характеристики определяются на поверхности контакта іруит- фундамент. Результаты этих испытаний хорошо совпадают. Напряжения в условиях кольцевого сдвига более однородны, при этом испытании легче получить большие деформации сдвига и определить остаточную прочность грунта, чем в приборе прямого сдвига. Подготовка образца для испытаний в условиях прямого сдвига менее трудоемка по сравнению с кольцевым сдвигом.

Сравнение результатов испытаний в условиях простого сдвига с результатами испытаний в условиях трехосного сжатия или прямого среза свидетельствует о том, что в условиях простого сдвига максимальная прочность получается ниже, а разница в значениях остаточной прочности менее существенна. Учитывая эти различия, рекомендуется принимать значения пиковой прочности при срезе с понижающими коэффициентами 0,77-0,85 .

Для полевых исследований прочности слабых грунтов (торфов, илов, текучих и текучепластичных глинистых грунтов) применяется сдвигомер-крыльчатка. Аналогичный миниприбор используется и в лабораторных условиях. Крыльчатка представляет собой две одинаковые прямоугольные взаимно перпендикулярные пластинки, насаженные на вертикальную ось (рис. 8.28, в ), к которой прикладывается крутящий момент и измеряется его предельная величина, используемая для расчета сопротивления недренированному сдвигу с и.

В установках, действующих по схемам торсионного сдвига (рис. 8.28, г) и кручения пустотелого цилиндра (рис. 8.28, <)), образцы фиксируются в основании, и вращение производится вокруг вертикальной оси в верхней части образца. Изначально для этих схем испытаний применялись стабилометры кручения, в 1957 г. W. Kirpatric предложил использовать полые цилиндры грунта, что позволило приводить во вращение верхний нагрузочный штамп, а также создавать давление внутри и с внешней стороны образца. За рубежом приборы для испытаний получили название НСА (Hollow Cylinder Apparatys). При испытании полых цилиндрических образцов (рис. 8.30, в) моделируется истинное трехосное сжатие с вращением направлений осей главных напряжений (рис. 8.30, а). В результате создается широкий диапазон возможных вариантов сложного напряженного состояния в образце грунта, что особенно важно для грунтов анизотропных: можно изменять вертикальное (

Рис. 8.30. Испытания полых цилиндрических образцов: а - максимальные и минимальные напряжения в грунтах основания: б - прибор НСА (производитель Wykeham Farrance); в устройства для подготовки образцов; г - образец грунта перед установкой в камеру трехосного сжатия

Как уже отмечалось, при проведении испытаний грунтов необходимо выбрать условия, которые наиболее полно соответствуют реальным условиям работы грунта в основании будущего сооружения. К основным внешним факторам, влияющим на прочность грунтов, относятся: вид напряженного состояния, условия проведения испытаний (закрытая или открытая система, влияние порового давления и т. п.), скорость нагружения, характер нагружения образца (статическое или динамическое) и др.

Влияние вида напряженного состояния в условиях чистого сдвига, одноосного растяжения и сжатия, а также трехосного сжатия (схемы опытов приведены на рис. 8.27) на прочность грунтов можно проанализировать с помощью кругов Мора паспорта прочности грунта (рис. 8.31). Паспортом прочности грунта является кривая, огибающая предельные круги напряжений Мора в координатах нормальных и касательных напряжений. Предельный круг Мора соответствует предельному напряженному состоянию, достигаемому

при данном соотношении наибольшего и наименьшего главных нормальных напряжений, и имеет радиус R = /2с координатами центра ( / 2; 0). Для построения паспорта прочности по данным определения пределов прочности при объемном сжатии, одноосном сжатии и растяжении по совокупности парных значений o c v = ffmax и оъ = <7 П ип (полученных при объемном сжатии не менее чем при трех различных значениях бокового давления <7з) в координатах строят полуокружности радиусами /2 с координатами центров / 2; 0) К семейству полуокружностей добавляют полуокружности радиусами (т р /2и<т с /2с координатами центров (-я р / 2; 0) и (я с / 2; 0), где <т р - предел прочности при одноосном растяжении; я с - предел прочности при одноосном сжатии.

Рис. 8.31. Паспорт прочности по данным определения пределов прочности при объемном сжатии, одноосном сжатии и растяжении

Из диаграмм (рис. 8.31) следует, что один и гот же грунт, в зависимости от вида напряженного состояния, будет иметь различные величины предельных параметров прочности, наименьшее значение характерно для условий простого одноосного растяжения (разрыва), наибольшее - для условий объемного сжатия.

Характеристики прочности грунтов зависят от скорости нагружения образца , параметры сопротивления скальных и связных грунтов сдвигу (угол внутреннего трения и сцепление с) различны для одного и того же грунта, испытываемого в условиях быстрого или медленного сдвига. С уменьшением скорости нагружения (увеличением длительности испытания) величина удельного сцепления закономерно снижается, а угол внутреннего трения возрастает. С целью идентификации вида напряженного состояния, при котором касательные напряжения достигают предела прочности, применяют такие термины, как кратковременная и длительная устойчивость.

Кратковременная устойчивость предполагает возникновение ряда условий в массиве слабых водонасыщенных глинистых грунтов с низкой проницаемостью, как в ходе строительства, так и при эксплуатации сооружения. Эти условия включают быстрые темпы нагружения основания, отсутствие возможности дренирования, возникновение избыточного порового давления. В этом случае прочность глинистых грунтов оценивается в условиях недренироваиного нагружения.

Длительная устойчивость оценивается в условиях возможности дренирования и частичной (или полной) консолидации грунта с рассеиванием порового давления и стабилизацией деформаций. Эти условия возникают мгновенно при строительстве на крупно- обломочных и песчаных грунтах, в глинистых грунтах стабилизация деформаций продолжается более длительное время. При возникновении данных условий прочность грунта оценивается в условиях дренированного нагружения.

В некоторых случаях необходимо определять и кратковременную, и длительную устойчивость основания. Например, в течение строительства насыпи в водонасыщенных грунтах основания дренирование будет практически отсутствовать, а после ее возведения в процессе дренирования и консолидации прочность будет изменяться. В первом случае нужно проводить неконсолидированно-недренированные испытания, во втором - консолидированно-дренированные или консолидированно-недренированные.

К условиям испытаний, влияющим на прочность грунтов, прежде всего относятся закрытая или открытая (недренированная или дренированная) схемы испытании.

Параметры дренированной прочности определяют в установках прямого среза и трехосного сжатия (испытания консолидированно-дренированные). При определении прочности в условиях открытой системы из грунта при нагружении может отжиматься вода. За счет этого возникающее при передаче на грунт нагрузки (о) поровое давление (и) постепенно рассеивается и при медленном нагружении может упасть до нуля. В неполностью водонасыщенных грунтах поровое давление не учитывают. При дренированном нагружении прочность грунтов зависит в значительной степени от того, испытывает ли грунт сжатие или расширение от действия внешней нагрузки. Если грунт расширяется (например, зона перед подпорной стенкой) или сжимается (за подпорной стенкой), то прочность грунта будет различной. Прочность грунтов при расширении меньше прочности при сжатии.

Параметры недренированной прочности с и получают из результатов неконсолидированно-недренированных испытаний в установках прямого среза и трехосного сжатия, которые отражают поведение глинистого грунта с низкой проницаемостью при любой скорости нагружения, даже при очень медленной. Высокая скорость возведения сооружения и отсутствие возможности дренирования не дают грунту консолидироваться и влияют на его прочность. При определении прочности водонасыщенных грунтов в условиях закрытой системы грунт изолирован от внешней среды, он не может впитывать или отдавать воду при нагружении, его влажность остается постоянной. Возникающее при нагружении образца поровое (или нейтральное) давление (и) увеличивается пропорционально приложенной нагрузке (о) вплоть до момента разрушения образца или остается постоянным при данном постоянном напряжении о.

Сопротивление срезу с ы в водонасыщенных органо-минеральных и органических грунтах допускается отождествлять с величиной удельного сцепления с (по методике = 0), что позволяет вести расчеты несущей способности и устойчивости оснований и откосов по имеющимся расчетным схемам с использованием стандартных программ. Полевые исследования органо-минеральных и органических грунтов с помощью четырехлопастной крыльчатки в ряде случаев являются единственно возможным способом определения их механических свойств. Недренированная прочность используется как классификационный показатель, например, в стандарте Великобритании BS. В табл. 8.31 приведена классификация грунтов по недренированной прочности.

Наличие или отсутствие норового давления в грунтах имеет немалое значение при исследовании их прочности. В большинстве случаев результаты испытаний обрабатываются с использованием условия прочности Кулона или Мора-Кулона. Прочность грунта по Кулону зависит от нормального давления, которое можно выразить через полные и эффективные напряжения. При определении параметров прочности в полных напряжениях поровое давление не учитывают, полагая, что в условиях полного дренирования оно рассеивается, поэтому испытания на стадии сдвига проводят по открытой схеме, допуская дренирование и нагружение образца ступенями с выдержкой до полной стабилизации деформации сдвига. Если поровое давление измеряется, что возможно только при полном водонасыщении образцов и отсутствии дренирования, то при проведении опытов по схеме неконсолидированно-недренированного или консолидированно-недренированного сдвига можно определить параметры прочности в эффективных напряжениях. Чем больше поровое давление и, тем меньшая часть внешнего давления передается на скелет грунта. Для учета влияния порового давления, согласно К. Терцаги, вводят эффективное давление, тогда уравнение Кулона с учетом норового давления принимает вид:

где о" - эффективное давление; и - поровое давление; с" - удельное сцепление (в терминах эффективных напряжений).

Таблица 8.31

Сдвиговая прочность грунтов в недренированных испытаниях

Разновидность грунтов

Сопротивление недренированному сдвигу с„. кПа

Чрезвычайно низкой прочности

Очень низкой прочности

10 < с„ < 20

Низкой прочности

20 < с и < 40

Средней прочности

40 < с и < 75

Высокой прочности

75 < с и < 150

Очень высокой прочности

150 < с„ < 300

Чрезвычайно высокой прочности

с и > 300

Таким образом, если в расчетах устойчивости склонов или несущей способности оснований учитывается норовое давление, то параметры прочности принимают в эффективных напряжениях; если поровое давление не учитывается, то в полных.

Характер нагружения, также влияющий на параметры прочности грунтов, проявляется в разных способах передачи на грунт внешних напряжений. Они могут быть статическими (при действии постоянных или медленно меняющихся нагрузок) или динамическими (при действии переменных, циклических, периодических, импульсных нагрузок и др.). Особенности и закономерности разрушения одного и того же грунта в статических или динамических условиях различны, поэтому при динамических воздействиях прочность грунтов изучается специальными способами.