Реализация фильтров на операционных усилителях. Принципы схемотехнической реализации фильтров на операционном усилителе Активный фильтр низких частот 2 порядка

Разрабатывая "радиоуправляемое реле" я решил использовать частотный способ кодирования команд управления. При этом фильтр было принято решение построить на ОУ, так как в корпусе оставался еще не задействованный блок ОУ. Но на этом фантазировать я еще не закончил, немного подумал и решил, что можно еще с экономить на деталях используя элементы, которые есть в наличии. Это и привело к написанию этой статьи "расчет полосового фильтра на ОУ". Покопавшись в книгах, собрав всю необходимую информацию составил алгоритм расчета фильтра с однополярным питанием. Но об этом потом, а сейчас не много теории.

Все фильтры разделяются на: активные фильтры, использующие для формирования частотной характеристики заданного вида как пассивные (резисторы и конденсаторы), так и активные (транзисторы, микросхемы) элементы, и пассивные фильтры, которые для формирования частотной характеристики заданного вида используют только пассивные (резисторы и конденсаторы) элементы. А сейчас поговорим о полосовых фильтрах.

Полосовой фильтр так называется потому, что он пропускает только тот частотный диапазон на который настроен, при этом частоты находящиеся за пределами данного диапазона ослабляются. Любой полосовой фильтр имеет несколько основных параметров определяющих его характеристики: полоса пропускания (полоса в которой сигнал проходя через фильтр имеет наименьшее затухание), полоса затухания (полоса в которой, сигналы ослабляются), коэффициент усиления (характеристика фильтра, которая отвечает за то во сколько раз сигнал будет усилен или ослаблен в полосе пропускания).

Идеальный полосовой фильтр имеет прямоугольную полосу пропускания, но на практике этого добиться невозможно, а можно только в какой-то степени лишь приблизиться такой форме. Реальный фильтр неспособен полностью задержать частоты за границами желаемого диапазона частот, в результате имеется область у границ заданного диапазона, где сигнал только частично ослабляется. Эта область называется крутизной спада фильтра, и измеряется в "дБ" затухания на октаву.

Принцип работы полосового фильтра основан на изменении коэффициента усиления в зависимости от частоты входного сигнала. Основной в фильтре является RC-цепочка, включенная в цепь обратной связи которая, при изменении частоты влияет на коэффициента усиления. Ну все думаю теории хватит перейдем к расчетам.

Расчет произведем по ниже приведенной схеме. Элементы R1-R3 и C1, C2 - определяют полосу пропускания и коэффициент усиления. R4, R5 - смещение рабочей точки, это необходимо для питания от однополярного источника. Микросхема ОУ выполняет роль активного элемента и подключать ее необходимо согласно Datasheet. Ниже схемы на картинках приведен расчет полосового фильтра на ОУ, но вы так же можете воспользоваться файлами расчета в Mathcad 14 и модели в .

Схема полосового фильтра на ОУ

Данный фильтр можно использовать в светомузыкальных устройствах, радиоуправлении, датчиках и так далее.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
A Операционный усилитель

LM358

1 В блокнот
С1, C2 Конденсатор 3300 пФ 2 В блокнот
R1 Резистор

3.3 кОм

1 В блокнот
R2 Резистор

240 Ом

1 В блокнот
R3 Резистор

1.5 мОм

1 В блокнот
R4 Резистор

Активные фильтры реализуются на основе усилителей (обычно ОУ) и пассивных RC-фильтров. Среди преимуществ активных фильтров по сравнению с пассивными следует выделить:

· отсутствие катушек индуктивности;

· лучшая избирательность;

· компенсация затухания полезных сигналов или даже их усиление;

· пригодность к реализации в виде ИМС.

Активные фильтры имеют и недостатки:

Потребление энергии от источника питания;

Ограниченный динамический диапазон;

Дополнительные нелинейные искажения сигнала.

Отметим так же, что использование активных фильтров с ОУ на частотах свыше десятков мегагерц затруднено из-за малой частоты единичного усиления f T большинства ОУ широкого применения. Особенно преимущество активных фильтров на ОУ проявляется на самых низких частотах, вплоть до долей герц.

В общем случае можно считать, что ОУ в активном фильтре корректирует АЧХ пассивного фильтра за счет обеспечения разных условий для прохождения различных частот спектра сигнала, компенсирует потери на заданных частотах, что приводит к получению крутых спадов выходного напряжения на склонах АЧХ. Для этих целей используются разнообразные частотно-избирательные ОС в ОУ. В активных фильтрах обеспечивается получение АЧХ всех разновидностей фильтров: нижних частот (ФНЧ), верхних частот (ФВЧ) и полосовых (ПФ).

Первым этапом синтеза всякого фильтра является задание передаточной функции (в операторной или комплексной форме), которая отвечает условиям практической реализуемости и одновременно обеспечивает получение необходимой АЧХ или ФЧХ (но не обеих) фильтра. Этот этап называют аппроксимацией характеристик фильтра.

Операторная функция представляет собой отношение полиномов:

и однозначно определяется нулями и полюсами. Простейший полином числителя - константа. Число полюсов функции (а в активных фильтрах на ОУ число полюсов обычно равно числу конденсаторов в цепях, формирующих АЧХ) определяет порядок фильтра. Порядок фильтра указывает на скорость спада его АЧХ, которая для первого порядка составляет 20дБ/дек, для второго - 40дБ/дек, для третьего - 60дБ/дек и т.д.

Задачу аппроксимации решают для ФНЧ, затем с помощью метода инверсии частоты полученную зависимость используют для других типов фильтров. В большинстве случаев задают АЧХ, принимая нормированный коэффициент передачи:


где f(x) - функция фильтрации; x =? /? c - нормированная частота; ? c - частота среза фильтра; ? - допустимое отклонение в полосе пропускания.

В зависимости от того, какая функция принимается в качестве f(x) различают фильтры (начиная со второго порядка) Баттерворта, Чебышева, Бесселя и др. На рисунке 7.15 приведены их сравнительные характеристики.


Рисунок 7.15. Нормированные АЧХ фильтров

Фильтр Баттерворта (функция Батерворта) описывает АЧХ с максимально плоской частью в полосе пропускания и относительно небольшой скоростью спада. АЧХ такого ФНЧ может быть представлена в следующем виде:


где n - порядок фильтра.

Фильтр Чебышева (функция Чебышева) описывает АЧХ с определенной неравномерностью в полосе пропускания, но не большей скоростью спада.

Фильтр Бесселя характеризуется линейной ФЧХ, в результате чего сигналы, частоты которых лежат в полосе пропускания, проходят через фильтр без искажений. В частности, фильтры Бесселя не дают выбросов при обработке колебаний прямоугольной формы.

Помимо перечисленных аппроксимаций АЧХ активных фильтров известны и другие, например, обратного фильтра Чебышева, фильтра Золотарева и т.д. Заметим, что схемы активных фильтров не изменяются в зависимости от типа аппроксимации АЧХ, а изменяются соотношения между номиналами их элементов.

Простейшие (первого порядка) ФВЧ, ФНЧ, ПФ и их ЛАЧХ приведены на рисунке 7.16.

В этих фильтрах конденсатор, определяющий частотную характеристику, включен в цепь ООС.

Для ФВЧ (рисунок 7.16а) коэффициент передачи равен:


где? 1 =C 1 R 1 .

Частоту сопряжения асимптот? 1 находят из условия? 1 ? 1 =1, откуда

f 1 = 1/2?? 1 .

Для ФНЧ (рисунок 7.16б) имеем:


f 2 = 1/2?? 2 .

где? 2 =C 2 R 2 .

В ПФ (рисунок 7.16в) присутствуют элементы ФВЧ и ФНЧ.


Рисунок 7.16. Простейшие активные фильтры

Можно увеличить крутизну спада ЛАЧХ, если увеличить порядок фильтров. Активные ФНЧ, ФВЧ и ПФ второго порядка приведены на рисунке 7.17.

Наклон асимптот у них может достигать 40дБ/дек, а переход от ФНЧ к ФВЧ, как видно из рисунков 7.17а,б, осуществляется заменой резисторов на конденсаторы, и наоборот. В ПФ (рисунок 7.17в) имеются элементы ФВЧ и ФНЧ. Передаточные функции равны :

Для ФНЧ:


Для ФВЧ:



Рисунок 17.7. Активные фильтры второго порядка


Для ПФ резонансная частота равна:


Для ФНЧ и ФВЧ частоты среза соответственно равны:



Довольно часто ПФ второго порядка реализуют с помощью мостовых цепей. Наиболее распространены двойные Т-образные мосты, которые "не пропускают" сигнал на частоте резонанса (рисунок 7.18а) и мосты Вина, имеющие максимальный коэффициент передачи на резонансной частоте? 0 (рисунок 7.18б).


Рисунок 17.8. Активные ПФ

Мостовые схемы включены в цепи ПОС и ООС. В случае двойного Т-образного моста глубина ООС минимальна на частоте резонанса, и усиление на этой частоте максимально. При использовании моста Вина, усиление на частоте резонанса максимально, т.к. максимальна глубина ПОС. При этом для сохранения устойчивости глубина ООС, введенной с помощью резисторов R 1 и R 2 , должна быть больше глубины ПОС. Если глубины ПОС и ООС близки, то такой фильтр может иметь эквивалентную добротность Q?2000.

Юрий Садиков
г. Москва

В статье приведены результаты работ по созданию устройства, представляющего собой комплект активных фильтров для построения высококачественных трехполосных усилителей низкой частоты классов HiFi и HiEnd.

В процессе предварительных исследований суммарной АЧХ трехполосного усилителя, построенного с использованием трех активных фильтров второго порядка, выяснилось, что эта характеристика при любых частотах стыков фильтров обладает весьма высокой неравномерностью. При этом она весьма критична к точности настройки фильтров. Даже при небольшом рассогласовании неравномерность суммарной АЧХ может составить 10…15 дБ!

МАСТЕР КИТ выпускает набор NM2116, из которого можно собрать комплект фильтров, построенный на базе двух фильтров и вычитающего сумматора, не имеющий вышеперечисленных недостатков. Разработанное устройство малочувствительно к параметрам частот среза отдельных фильтров и при этом обеспечивает высоколинейную суммарную АЧХ.

Основными элементами современной высококачественной звуковоспроизводящей аппаратуры являются акустические системы (АС).

Самыми простыми и дешевыми являются однополосные АС, имеющие в своем составе один громкоговоритель. Такие акустические системы не способны с высоким качеством работать в широком диапазоне частот в силу использования одного громкоговорителя (головка громкоговорителя - ГГ). При воспроизведении разных частот к ГГ предъявляются различные требования. На низких частотах (НЧ) динамик должен обладать большим и жестким диффузором, низкой резонансной частотой и иметь большой ход (для прокачки большого объема воздуха). А на высоких частотах (ВЧ) наоборот – необходим небольшой легкий но твердый диффузор с малым ходом. Все эти характеристики совместить в одном громкоговорителе практически невозможно (несмотря на многочисленные попытки), поэтому одиночный громкоговоритель имеет высокую частотную неравномерность. Кроме этого в широкополосных громкоговорителях существует эффект интермодуляции, который проявляется в модуляции высокочастотных компонент звукового сигнала низкочастотными. В результате звуковая картина нарушается. Традиционным решением этой проблемы является разделение воспроизводимого диапазона частот на поддиапазоны и построение акустических систем на базе нескольких динамиков на каждый выбранный частотный поддиапазон.

Пассивные и активные разделительные электрические фильтры

Для снижения уровня интермодуляционных искажений перед громкоговорителями устанавливаются электрические разделительные фильтры. Эти фильтры также выполняют функцию распределения энергии звукового сигнала между ГГ. Их рассчитывают на определенную частоту разделения, за пределами которой фильтр обеспечивает выбранную величину затухания, выражаемую в децибелах на октаву. Крутизна затухания разделительного фильтра зависит от схемы его построения. Фильтр первого порядка обеспечивазатухание 6 дБ/окт, второго порядка - 12 дБ/окт, а третьего порядка - 18 дБ/окт. Чаще всего в АС используются фильтры второго порядка. Фильтры более высоких порядков применяются в АС редко из-за сложной реализации точных значений элементов и отсутствия потребности иметь более высокие значения крутизны затухания.

Частота разделения фильтров зависит от параметров применяемых ГГ и от свойств слуха. Наилучший выбор частоты разделения - при котором каждый ГГ АС работает в пределах области поршневого действия диффузора. Однако при этом АС должна иметь много частот разделения (соответственно ГГ), что значительно увеличивает ее стоимость. Технически обосновано, что для качественного звуковоспроизведения достаточно применять трехполосное разделение частот. Однако на практике существуют 4-х, 5-и и даже 6-и полосные акустические системы. Первую (низкую) частоту разделения выбирают в диапазоне 200…400 Гц, а вторую (среднюю) частоту разделения в диапазоне 2500...4000 Гц.

Традиционно фильтры изготавливаются с применением пассивных L, C, R элементов, и устанавливаются непосредственно на выходе оконечного усилителя мощности (УМ) в корпусе АС, согласно рис.1.

Рис.1. Традиционное исполнение АС.

Однако у подобного исполнения существует ряд недостатков. Во первых, для обеспечения необходимых частот среза приходится работать с достаточно большими индуктивностями, поскольку необходимо выполнить одновременно два условия – обеспечить необходимую частоту среза и обеспечить согласование фильтра с ГГ (иными словами нельзя уменьшить индуктивность за счет увеличения емкости, входящей в состав фильтра). Намотку катушек индуктивности желательно производить на каркасах без применения ферромагнетиков из-за существенной нелинейности их кривой намагниченности. Соответственно, воздушные катушки индуктивности получаются достаточно громоздкими. Кроме всего существует погрешность намотки, которая не позволяет обеспечить точно рассчитанную частоту среза.

Провод, которым ведется намотка катушек, обладает конечным омическим сопротивлением, что в свою очередь, приводит к уменьшению КПД системы в целом и преобразованием части полезной мощности УМ в тепло. Особенно заметно это проявляется в автомобильных усилителях, где питающее напряжение ограничено 12 В. Поэтому для построения автомобильных стереосистем часто применяют ГГ пониженного сопротивления обмотки (~2…4 Ом). В такой системе введение дополнительного сопротивления фильтра порядка 0,5 Ом может привести к уменьшению выходной мощности на 30%…40%.

При проектировании высококачественного усилителя мощности стараются свести к минимуму его выходное сопротивление для увеличения степени демпфирования ГГ. Применение пассивных фильтров заметно снижает степень демпфирования ГГ, поскольку последовательно с выходом усилителя подключается дополнительное реактивное сопротивление фильтра. Для слушателя это проявляется в появлении "бубнящих" басов.

Эффективным решением является использование не пассивных, а активных электронных фильтров, в которых все перечисленные недостатки отсутствуют. В отличие от пассивных фильтров, активные фильтры устанавливается до УМ как показано на рис.2.

Рис.2. Построение звуковоспроизводящего тракта с использованием активных фильтров.

Активные фильтры представляют собой RC фильтры на операционных усилителях (ОУ). Несложно построить активные фильтры звуковых частот любого порядка и с любой частотой среза. Расчет подобных фильтров производится по табличным коэффициентам с заранее выбранным типом фильтра, необходимым порядком и частотой среза.

Использование современных электронных компонентов позволяет изготавливать фильтры, обладающие минимальными значениями уровней собственных шумов, малым энергопотреблением, габаритами и простотой исполнения/повторения. В результате, использование активных фильтров приводит к увеличению степени демпфирования ГГ, снижает потери мощности, уменьшает искажения и увеличивает КПД звуковоспроизводящего тракта в целом.

К недостаткам такой архитектуры относится необходимость использования нескольких усилителей мощности и нескольких пар проводов для подключения акустических систем. Однако в настоящее время это не является критичным. Уровень современных технологий значительно снизил цену и размеры УМ. Кроме того, появилось достаточно много мощных усилителей в интегральном исполнении с отличными характеристиками, даже для профессионального применения. На сегодняшний день существует ряд ИМС с несколькими УМ в одном корпусе (фирма Panasonic выпускает ИМС RCN311W64A-P с 6-ю усилителями мощности специально для построения трехполосных стереосистем). Кроме того УМ можно расположить внутри АС и использовать короткие провода большого сечения для подключения динамиков, а входной сигнал подать по тонкому экранированному кабелю. Однако, если даже не удается установить УМ внутри АС, применение многожильных соединительных кабелей не представляет собой сложную проблему.

Моделирование и выбор оптимальной структуры активных фильтров

При построении блока активных фильтров было решено использовать структуру состоящую из фильтра высокой частоты (ФВЧ), фильтра средней частоты (полосовой фильтр, ФСЧ) и фильтра низкой частоты (ФНЧ).

Это схемотехническое решение было практически реализовано. Был построен блок активных фильтров НЧ, ВЧ и ПФ. В качестве модели трехполосной АС был выбран трехканальный сумматор, обеспечивающий суммирование частотных компонент, согласно рис.3.

Рис.3. Модель трехканальной АС с набором активных фильтров и ФСЧ на ПФ.

При снятии АЧХ такой системы, при оптимально подобранных частотах среза, ожидалось получить линейную зависимость. Но результаты оказались далеки от предполагаемых. В точках сопряжения характеристик фильтров наблюдались провалы/выбросы в зависимости от соотношения частот среза соседних фильтров. В итоге подбором значений частот среза не удалось привести проходную АЧХ системы к линейному виду. Нелинейность проходной характеристики свидетельствует о наличии частотных искажений в воспроизводимом музыкальном оформлении. Результаты эксперимента представлены на рис.4, рис.5 и рис.6. Рис.4 иллюстрирует сопряжение ФНЧ и ФВЧ по стандартному уровню 0.707. Как видно из рисунка в точке сопряжения результирующая АЧХ (показана красным цветом) имеет существенный провал. При раздвижении характеристик глубина и ширина провала увеличивается, соответственно. Рис.5 иллюстрирует сопряжение ФНЧ и ФВЧ по уровню 0.93 (сдвижка частотных характеристик фильтров). Эта зависимость иллюстрирует минимально достижимую неравномерность проходной АЧХ, путем подбора частот среза фильтров. Как видно из рисунка, зависимость явно не линейна. При этом частоты среза фильтров можно считать оптимальными для данной системы. При дальнейшем сдвиге частотных характеристик фильтров (сопряжение по уровню 0.97) наблюдается появление выброса в проходной АЧХ в точке стыка характеристик фильтров. Подобная ситуация показана на рис.6.

Рис.4. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.707.

Рис.5. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.93.

Рис.6. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.97 и появление выброса.

Основной причиной нелинейности проходной АЧХ является наличие фазовых искажений на границах частот среза фильтров.

Решить подобную проблему позволяет построение среднечастотного фильтра не в виде полосового фильтра, а с использованием вычитающего сумматора на ОУ. Характеристика такого ФСЧ формируется в соответствии с формулой: Uсч = Uвх – Uнч - Uвч

Структура такой системы представлена на рис.7.

Рис.7. Модель трехканальной АС с набором активных фильтров и ФСЧ на вычитающем сумматоре.

При таком способе формирования канала средних частот пропадает необходимость в точной настройке соседних частот среза фильтров, т.к. среднечастотный сигнал формируется вычитанием из полного сигнала сигналов фильтров высоких и низких частот. Кроме обеспечения взаимодополняющих АЧХ, у фильтров получаются так же и комплементарные ФЧХ, что гарантирует отсутствие выбросов и провалов в суммарной АЧХ всей системы.

АЧХ среднечастотного звена с частотами среза Fср1 = 300 Гц и Fср2 = 3000 Гц приведена на рис. 8. По спаду АЧХ обеспечивается затухание не более 6 дБ/окт, что, как показывает практика, вполне достаточно для практической реализации ФСЧ и получения качественного звучания СЧ ГГ.

Рис.8. АЧХ фильтра средних частот.

Проходной коэффициент передачи такой системы с ФНЧ, ФВЧ и ФСЧ на вычитающем сумматоре получается линейным во всем диапазоне частот 20 Гц…20 кГц, согласно рис. 9. Полностью отсутствуют амплитудные и фазовые искажения, что обеспечивает кристальную чистоту воспроизводимого звукового сигнала.

Рис.9. АЧХ системы фильтров с ФСЧ на вычитающем сумматоре.

К недостаткам подобного решения можно отнести жесткие требования к точности номиналов резисторов R1, R2, R3 (согласно рис.10, на котором представлена электрическая схема вычитающего сумматора) обеспечивающих балансировку сумматора. Эти резисторы должны использоваться с допусками на точность не более 1%. Однако при возникновении проблем с приобретением таких резисторов потребуется сбалансировать сумматор используя вместо R1, R2 подстроечные резисторы.

Балансировка сумматора выполняется по следующей методике. Сначала на вход системы фильтров необходимо подать низкочастотное колебание с частотой, намного ниже частоты среза ФНЧ, например 100 Гц. Изменяя значение R1 необходимо установить минимальный уровень сигнала на выходе сумматора. Затем на вход системы фильтров подается колебание с частотой заведомо большей частоты среза ФВЧ, например 15 кГц. Изменяя значение R2 опять устанавливают минимальный уровень сигнала на выходе сумматора. Настройка закончена.

Рис.10. Схема вычитающего сумматора.

Методика расчета активных ФНЧ и ФВЧ

Как показывает теория для фильтрации частот звукового диапазона необходимо применять фильтры Баттерворта не более второго или третьего порядка, обеспечивающие минимальную неравномерность в полосе пропускания.

Схема ФНЧ второго порядка представлена на рис. 11. Его расчет производится по формуле:

где a1=1.4142 и b1=1.0 - табличные коэффициенты, а С1 и С2 выбираются из соотношения C2/C1 больше равно 4xb1/a12, причем не следует выбирать отношение C2/C1 много большим правой части неравенства.

Рис.11. Схема ФНЧ Баттерворта 2-го порядка.

Схема ФВЧ второго порядка представлена на рис. 12. Его расчет производится по формулам:

где C=C1=C2 (задаются перед расчетом), а a1=1.4142 и b1=1.0 - те же табличные коэффициенты.

Рис.12. Схема ФВЧ Баттерворта 2-го порядка.

Специалисты МАСТЕР КИТ разработали и исследовали характеристики такого блока фильтров, обладающего максимальной функциональностью и минимальными габаритами, что является существенным при применении устройства в быту. Использование современной элементной базы позволило обеспечить максимальное качество разработке.

Технические характеристики блока фильтров

Принципиальная электрическая схема активного фильтра показана на рис.13. Перечень элементов фильтра приведен в таблице.

Фильтр выполнен на четырех операционных усилителях. ОУ объединены в одном корпусе ИМС MC3403 (DA2). На DA1 (LM78L09) собран стабилизатор питающего напряжения с соответствующими фильтрующими емкостями: С1, С3 по входу и С4 по выходу. На резистивном делителе R2, R3 и конденсаторе С5 выполнена искусственная средняя точка.

На ОУ DA2.1 выполнен буферный каскад сопряжения выходного и входных сопротивлений источника сигнала и фильтров НЧ, ВЧ и СЧ. На ОУ DA2.2 собран фильтр НЧ, на ОУ DA2.3 - фильтр ВЧ. ОУ DA2.4 выполняет функцию формирователя полосового СЧ фильтра.

На контакты X3 и X4 подается напряжение питания, на контакты X1, X2 - входной сигнал. С контактов X5, X9 снимается отфильтрованный выходной сигнал для тракта НЧ; с X6, X8 – ВЧ и с X7, X10 – СЧ трактов соответственно.

Рис.13. Схема электрическая принципиальная активного трехполосного фильтр

Перечень элементов активного трехполосного фильтра

Позиция Наименование Примечание Кол.
С1, С4 0,1 мкФ Обозначение 104 2
C2, С10, C11, C12, C13, C14, C15 0,47 мкФ Обозначение 474 7
С3, C5 220 мкФ/16 В Замена 220 мкФ/25 В 2
С6, C8 1000 пФ Обозначение 102 2
С7 22 нФ Обозначение 223 1
С9 10 нФ Обозначение 103 1
DA1 78L09 1
DA1 MC3403 Замена LM324, LM2902 1
R1…R3 10 кОм 3
R8…R12 10 кОм Допуск не более 1%* 5
R4…R6 39 кОм 3
R7 75 кОм - 1
Колодка DIP-14 1
Штыревой разъем 2-х контактный 2
Штыревой разъем 3-х контактный 2

Внешний вид фильтра показан на рис.14, печатная плата – на рис.15, расположение элементов – на рис.16.

Конструктивно фильтр выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в стандартный корпус BOX-Z24A, для этого предусмотрены монтажные отверстия по краям платы диаметром 4 и 8 мм. Плата в корпусе крепится двумя винтами-саморезами.

Рис.14. Внешний вид активного фильтра.

Рис.15. Печатная плата активного фильтра.

Рис.16. Расположение элементов на печатной плате активного фильтра.

Фильтры предназначены для избирательного выделения полезного сигнала из смеси шумов, помех и самого сигнала. Фильтры характеризуются полосой пропускания, резонансной частотой, эффективностью выделения/ослабле- ния полезного/мешающего сигнала.

Фильтры являются одними из самых распространенных и значимых узлов радиоэлектронной аппаратуры. Они позволяют:

♦ выделить необходимую пользователю информацию из зашумленного сигнала;

♦ улучшить соотношение сигнал/шум;

♦ повысить качество сигнала.

По назначению известны фильтры:

♦ высоких (верхних) частот;

♦ низких (нижних) частот;

♦ полосовые;

♦ узкополосные;

♦ широкополосные;

♦ режекторные (заграждающие) и пр.

ОУ .

На рис. 38.1 приведена типовая низких частот и ему соответствующая АЧХ.

Рассмотрим основные типы фильтров, выполненных с применением

Как известно, коэффициент передачи ОУ, включенного по схеме, рис. 38.2, определяется как 1+R3/R4. Для реализации типового фильтра нижних частот необходимо выполнение условий:

Рис. 38.2. Пример практической реализации низких частот

С1=С2=С, R1=R2,Тогда

частоту среза фильтра можно определить из приближенного соотношения: ДГц]=10/С[мкФ], рис. 38.3. Аналогичный вывод можно получить для расчета фильтра высоких частот.

Соединив последовательно фильтр нижних и верхних частот, можно получить , которого представлена на рис. 38.9.

Рис. 38.7. Пример практической реализации высоких частот

Примечание.

Отклонение номиналов прецизионных элементов фильтров от рекомендованных (расчетных) значений не должно превышать 7 %. Отметим, что для построения фильтра можно использовать ‘прецизионные элементы ( , резисторы) равного номинала, включенные для получения значений R/2 и 2С параллельно.

♦ выходного усилителя (DA 1.2);

Частоты среза, от…до

Напряжение питания

Таблица 38.1 (продолжение)

Частоты среза, от…до

Напряжение питания

Полосовые линейные фильтры 2-го(*4-го;**8-го) порядка

с программ ированием: корпус DIP, WideSO; 2(**4) элемента в корпусе Таблица 38.2

Частоты среза, от…до

Напряжение питания

Фильтры НЧ 5-го порядка на переключаемых конденсаторах:

корпус DIP, SO; 1 элемент в корпусе Таблица 38.3

Частоты среза, от…до

Напряжение питания

Частоты среза, от…до

Напряжение

Примечание.

Порог срабатывания компаратора DA1 устанавливают потенциометром R4. Максимальная чувствительность включения компаратора составляет 10 мВ. Светодиод HL1 индицирует наличие надпорогового сигнала. Потенциометром R7 устанавливают верхний предел реакции микросхемы управления LED-шкалой DA2 на величину управляющего напряжения - от 1 до 6 В; потенциометром R10 - нижний предел - от О до 5 В; VD4 защищает управляющие входы микросхемы DA2 от перенапряжений, одновременно стабилизируя управляющие напряжения.

VD5, VD6 автоматически обеспечивает минимальную разность между верхним и нижним уровнями управляющих напряжений на выводах 3 и 16 микросхемы DA2 в 1 В. Диод VD3 защищает цепь управления LED-шкалой от перенапряжения. Резисторы R11-R22 предназначены для согласования уровня сигналов, снимаемых с выходов микросхемы DA2, с уровнями КМОП-логики.

Если на вход устройства поступает надпороговый аналоговый (или цифровой) сигнал, то с увеличением его частоты произойдет плавное поочередное или одновременно-групповое переключение каналов индикации ( HL2-HL13). Одновременно управляющие сигналы с выходов микросхемы DA2 через КМОП-инверторы DD1, DD2 поступят на управляющие входы аналоговых КМОП-ключей (микросхемы DA3- DA5).

Полоса пропускания каждого из каналов при установке на управляющих входах 3 и 16 микросхемы DA2 максимального и минимального уровней 6 и О Б, соответственно, составят для первых шести каналов 400 Гц у для остальных - 760 Гц. Таким образом, первый канал пропустит сигналы частотой ниже 400 Гц, второй - в полосе 400-800 Гц,… последний, 12-й канал пропускает частоты свыше 6 кГц.

Примечание.

Регулировкой потенциометров R7 и R10 можно плавно изменять ширину и границы частотных каналов.

HL2-HL13 динамически индицируют номер задействованного канала управления.

Устройство потребляет 60л*А при напряжении питания 15 Б и одном све гящемся светодиоде.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Активные RC фильтры применяются на частотах ниже 100 кГц. Применение положительной обратной связи позволяет увеличивать добротность полюса фильтра. При этом полюс фильтра можно реализовать на RC элементах, которые значительно дешевле и в данном диапазоне частот меньше по габаритам индуктивностей. Кроме того, величина емкости конденсатора, входящего в состав активного фильтра может быть уменьшена, так как в ряде случаев усилительный элемент позволяет увеличивать ее значение. Применение конденсаторов с малой емкостью позволяет выбирать их типы, обладающие малыми потерями и высокой стабильностью параметров.

При проектировании активных фильтров фильтр заданного порядка разбивается на звенья первого и второго порядка. Результирующая АЧХ получится перемножением характеристик всех звеньев. Применение активных элементов (транзисторов, операционных усилителей) позволяет исключить влияние звеньев друг на друга и проектировать их независимо. Это обстоятельство значительно упрощает и удешевляет проектирование и настройку активных фильтров.

Активные фильтры НЧ первого порядка

На рисунке 2 приведена схема активного RC фильтра нижних частот первого порядка на операционном усилителе. Данная схема позволяет реализовать полюс коэффициента передачи на нулевой частоте, величинами сопротивления резистора R1 и емкости конденсатора C1 можно задать его частоту среза. Именно значения емкости и сопротивления определят полосу пропускания данной схемы активного фильтра.


Рисунок 2. Схема активного RC фильтра нижних частот первого порядка

В схеме, приведенной на рисунке 2, коэффициент усиления определяется отношением резисторов R2 и R1:

(1),

а величина емкости конденсатора C1 увеличивается в коэффициент усиления плюс единица раз за счет эффекта Миллера.

(2),

Следует отметить, что подобный способ увеличения значения емкости приводит к уменьшению динамического диапазона схемы в целом. Поэтому к данному способу увеличения емкости конденсатора прибегают в крайних случаях. Обычно обходятся интегрирующей RC-цепочкой, в которой уменьшение частоты среза достигается увеличением сопротивления резистора при постоянном значении емкости конденсатора. Для того, чтобы устранить влияние цепей нагрузки, на выходе RC-цепочки обычно ставится буферный усилитель с единичным коэффициентом усиления по напряжению.


Рисунок 3. Схема RC фильтра нижних частот первого порядка (RC-цепочка)

Тем не менее, при достаточно низкой частоте среза фильтра низких частот может потребоваться большое значение емкости конденсатора. Электролитические конденсаторы, обладающие значительной емкостью, не подходят для создания фильтров из-за большого разброса параметров и низкой стабильности. Конденсаторы, выполненные на основе керамики с большим значением электрической постоянной ε , тоже не отличаются стабильностью значения емкости. Поэтому применяются высокостабильные конденсаторы малой емкости, и их значение увеличивается в схеме активного фильтра, приведенной на рисунке 2.

Активные фильтры НЧ второго порядка

Еще больше распространены схемы активных фильтров второго порядка, позволяющие реализовать большую крутизну спада АЧХ по сравнению со схемой первого порядка. Кроме того, эти звенья позволяют настраивать частоту полюса на заданное значение, полученное при аппроксимации амплитудно-частотной характеристики. Наибольшее распространение получила схема Саллена-Ки, приведенная на рисунке 4.


Рисунок 4. Схема активного RC фильтра нижних частот второго порядка

Амплитудно-частотная характеристика этой схемы подобна АЧХ звена второго порядка пассивного LC фильтра. Ее вид приведен на рисунке 5.



Рисунок 5. Примерный вид амплитудно-частотной характеристики звена второго порядка активного RC фильтра нижних частот

Частота резонанса полюса при этом может быть определена из формулы:

(3),

а его добротность:

(4),

Частоты нулей в идеальном случае равны бесконечности. В реальной схеме зависят от конструкции печатной платы и параметров использованных резисторов и конденсаторов.

Схема Саллена-Ки позволяет максимально упростить выбор элементов схемы. Обычно конденсаторы C1 и C2 выбирают одинаковой емкости. Резисторы R1 и R2 выбирают одинакового сопротивления. Сначала задаются значением емкостей C1 и C2. Как уже обсуждалось выше, их емкости стараются выбрать минимальными. Именно такие конденсаторы обладают максимально стабильными характеристиками. Затем определяют значение R1 и R2:

(5),

Резисторы R3 и R4 в схеме Саллена-Ки определяют коэффициент усиления по напряжению точно так же как и в обычной схеме инвертирующего усилителя. В схеме активного фильтра именно эти элементы будут определять добротность полюса.

(6),

В схеме активного RC фильтра усилитель охвачен как отрицательной, так и положительной обратной связью. Глубина положительной обратной связи определяется соотношением резисторов R1R2 или конденсаторов C1C2. Если добротность полюса задавать за счет этого соотношения (отказаться от равенства сопротивлений или конденсаторов), то операционный усилитель можно охватить 100% отрицательной обратной связью и обеспечить единичный коэффициент усиления активного элемента. Это позволит упростить схему звена второго порядка. Упрощенная схема активного RC фильтра второго порядка показана на рисунке 6.


Рисунок 6. Упрощенная схема Саллена-Ки

К сожалению при единичном коэффициенте усиления можно задаваться только одинаковыми значениями сопротивлений R1 и R2, а необходимую добротность получать соотношением емкостей. Поэтому расчет начинается с задания номинального значения резисторов R1 = R2 = R. Тогда емкости можно рассчитать следующим образом:

(7),
(8),

Уже много лет все привыкли в качестве активного элемента использовать операционный усилитель. Однако в ряде случаев может оказаться, что схема на транзисторе будет или занимать меньшую площадь, или окажется более широкополосной. На рисунке 7 приведена схема активного ФНЧ, выполненного на биполярном транзисторе.


Рисунок 7. Схема активного RC фильтра нижних частот на транзисторе

Расчет данной схемы (элементов R1, R2, C1, C2) не отличается от расчета, приведенной на рисунке 6. Расчет резисторов R3, R4, R5 не отличается от расчета обычного каскада эмиттерной стабилизации.

Историческая справка

Первыми частотными фильтрами были пассивные LC фильтры. Затем уже в 30-х годах XX века было замечено, что обратная связь в усилительных каскадах способна увеличивать добротность LC контуров радиоусилителей. Одна из наиболее распространенных схем увеличения добротности параллельного LC контура приведена на рисунке 1.


Рисунок 1. Схема увеличения добротности параллельного колебательного контура

Эта особенность в LC схемах большого распространения не получила, так как LC схемы позволяют конструктивными методами обеспечить добротноть, необходимую для реализации большинства схем фильтров, работающих на высоких частотах. В то же самое время схемы с положительной обратной связью, использующиеся для увеличения добротности контуров, обладают способностью к самовозбуждению и обычно ограничивают динамический диапазон выходного сигнала из-за влияния шумов усилительного каскада.

Совершенно другая ситуация сложилась в области низких частот. Это в основном частоты звукового диапазона (от 20 Гц до 20 кГц). В этом диапазоне частот габариты индуктивностей и конденсаторов становятся недопустимо большими. Кроме того, потери этих радиотехнических элементов тоже возрастают, что в большинстве случаев не позволяет получить добротность полюсов фильтра, необходимую для реализации заданной . Все это привело к необходимости применения усилительных каскадов.

Дата последнего обновления файла 18.06.2018

Литература:

  1. Титце У. Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем. — 12-е издание. М.: Додэка XXI, 2015. - 1784