Уравнение состояния реального газа ван дер ваальса. Реальные газы

Открыты Я. Д. Ван дер Ваальсом в 1869 году .

Вандерваальсовы силы межатомного взаимодействия инертных газов обусловливают возможность существования агрегатных состояний инертных газов (газ , жидкость и твёрдые тела).

К вандерваальсовым силам относятся взаимодействия между диполями (постоянными и наведёнными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса . Эти взаимодействия, а также водородные связи , определяют формирование пространственной структуры биологических макромолекул.

Вандерваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами .

Энциклопедичный YouTube

    1 / 3

    ✪ Силы Ван-дер-Ваальса | Силы межмолекулярного взаимодействия | Химия (видео 1)

    ✪ Урок 194. Уравнение Ван-дер-Ваальса

    ✪ Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)

    Субтитры

    В нашем путешествии по химии, мы уже сталкивались с взаимодействиями между молекулами, с металлическими связями, которые образуются с помощью электронов, рассматривали взаимодействия между молекулами воды. Думаю, будет полезно рассмотреть разные типы межмолекулярных взаимодействий и их влияние на температуру кипения и плавления веществ. Начнем с самых слабых взаимодействий. Для примера возьмем гелий. Нарисую несколько атомов гелия. Давайте посмотрим в периодическую таблицу Менделеева, вместо гелия можно взять любой благородный газ. Благородным газам, можно сказать, повезло – их внешняя орбиталь полностью заполнена. Итак, неон или гелий… Давайте возьмем неон, у него на орбитали есть все восемь электронов. Неон записывается вот таким образом. И ему ничего не нужно. Он полностью доволен жизнью. И так как ему очень хорошо в таком состоянии, он инертен. У него нет причин быть активным. Об этих причинах мы еще поговорим. Электроны распределены вокруг атома равномерно. Это абсолютно нейтральный атом. Он не стремится образовать связь с другим атомом. Итак, электроны рассеяны вокруг атома и они не будут притягиваться и как-то взаимодействовать друг с другом. Но, оказывается, при пониженной температуре неон переходит в жидкое состояние, и сам факт этого означает, что возникают какие-то силы, и из-за них атомы неона присоединяются друг к другу. Это происходит при очень низкой температуре, потому что силы эти очень слабы. Поэтому в основном неон находится в состоянии газа. Но если его сильно охладить, возникают очень слабые силы и атомы или молекулы неона соединяются друг с другом. Эти силы возникают из-за того, что у электрона нет постоянной траектории движения вокруг ядра. Траектория вероятностная. Давайте возьмем неон, я не буду рисовать валентные электроны в таком виде, вместо этого я нарисую облако вероятности нахождения электрона в пространстве. Это конфигурация атома неона. Итак, 1s2, а 2s2, 2p6 – это внешний слой, да? В этом состоянии у электрона самая большая энергия. Как бы это нарисовать... У него есть 2s уровень. 1s-уровень находится внутри, еще в атоме есть p-орбитали. p-орбитали направлены в разные стороны. Но сейчас не об этом. У нас есть еще один атом неона, я нарисовал распределение вероятности. Получилось так себе. Но, думаю, вы поняли мысль. Посмотрите ролик об электронной конфигурации, если хотите подробнее рассмотреть эту тему, но смысл здесь в том, что распределение вероятности – это область пространства, где может находиться электрон. В какой-то момент времени здесь нет ни одного электрона. А в какой-то другой момент все электроны здесь. Тоже самое происходит и в этом неоне. Если вы подумаете о всех возможных конфигурациях электронов в этих двух атомах неона, вы увидите, что маловероятно, что электроны в них распределены равномерно. Намного более вероятным окажется то, что в каком-то из атомов электроны распределены неравномерно. Например, в этом атоме неона восемь валентных электронов расположены вот так: один, два, три, четыре, пять, шесть, семь, восемь. Что это значит? Возникает небольшой временный заряд, вот с этой стороны. Эта сторона более отрицательная, чем эта, или эта сторона более положительная чем та. Точно также, если в это же время у меня есть еще один атом неона, у него есть... у него есть один, два, три, четыре, пять, шесть, семь, восемь электронов. Нарисую немного по-другому. Предположим, этот атом неона вот такой: один, два, три, четыре, пять, шесть, семь, восемь. Выделю эти слабые силы темным цветом. Итак, здесь небольшой отрицательный заряд. Временный, только в этот момент, здесь отрицательный заряд. А здесь положительный. Эта сторона отрицательная. Эта сторона положительная. В этот момент между этими атомами неона возникает слабое притяжение, а потом оно исчезает, потому что электроны перемещаются. Но важно понимать, что моменты, когда электроны полностью рассеяны бывают очень-очень редко. Здесь всегда случайное распределение, здесь всегда есть некоторая, я не хочу сказать полярность, потому что это слишком сильное слово. Но всегда есть небольшой избыточный заряд на одной или другой стороне атома, и поэтому этот атом притягивается к сторонам других молекул с противоположным зарядом. Это очень, очень, очень слабая сила. Ее называют Лондоновская дисперсионная сила. Кстати, этот человек, Фриц Лондон, не британец. Он американский немец. Лондонская дисперсионная сила – это самая слабая из сил Ван-дер-Ваальса. Запишу этот термин. «Силы Ван-дер-Ваальса». Я его произношу. Силы Ван-дер-Ваальса – это класс межмолекулярных, или в нашем случае молекула неона - это атом. Это одноатомная молекула, так сказать. Силы Ван-дер-Ваальса – это класс сил межмолекулярного взаимодействия, это не ковалентные связи и не ионные связи, такие как мы видели в солях. Сейчас мы рассмотрим это подробнее. А сила Лондона – самая слабая из них. Так неон и другие благородные газы, между их молекулами действуют только дисперсионные силы, которые являются самыми слабыми межмолекулярными силами. И поэтому неон легко переходит в газообразное состояние. Благородные газы переходят в газообразное состояние при очень низкой температуре. Именно поэтому их называют благородными газами. Эти вещества ведут себя почти как идеальный газ, потому что их молекулы почти не взаимодействуют. Ладно. А теперь давайте посмотрим, что происходит, если молекулы притягиваются друг к другу сильнее, то есть они немного более полярные. Например, возьмем хлороводород. Водород может как притягивать, так и отдавать электроны. Хлор притягивает к себе электроны. У хлора довольно высокая электроотрицательность. Но меньше, чем у этих элементов. Самые сильные акцепторы электронов это азот, кислород и фтор, но у хлора тоже довольно высокая электроотрицательность. Итак, у меня есть хлороводород. Это атом хлора, у него семь электронов и один электрон он берет у водорода. Он делит электрон с водородом, я обозначу это вот так. Хлор более электроотрицательный, чем водород, поэтому электроны все время находятся ближе к нему. Там, где находятся электроны, возникает частичный отрицательный заряд, а здесь возникает частичный положительный заряд. Очень похоже на водородные связи. На самом деле это такой же тип связи, как и водородные, это диполь-дипольные связи или диполь-дипольное взаимодействие. Так, если у меня есть один такой атом хлора и второй атом хлора, вот такой. Давайте, лучше я просто скопирую и вставлю этот рисунок, вот здесь. В итоге эти атомы взаимодействуют. Атомы хлора притягиваются… Точнее притягиваются молекулы хлороводорода. Положительная сторона, положительный полюс этого диполя находится на водороде, потому что электроны находятся ближе к хлору, и положительный полюс притягивается к атому хлора другой молекулы. И поэтому эти силы Ван-дер-ваальса, это диполь-дипольное взаимодействие сильнее, чем дисперсионная сила Лондона. Дисперсионные силы присутствуют при любых межмолекулярных взаимодействиях. Просто они очень слабые по сравнению с другими типами межмолекулярных взаимодействий. Дисперсионные силы нужно учитывать только в случае веществ вроде благородных газов. Даже здесь действуют лондоновские дисперсионные силы, когда изменяется распределение электронов в какой-то момент времени. Но диполь-дипольное взаимодействие намного сильнее. А из-за того, что оно сильнее, хлороводороду нужно больше энергии, чтобы перейти в жидкое и газообразное состояние, чем гелию. А если электроотрицательность еще больше, самыми электроотрицательными являются азот, кислород и фтор, то мы будем иметь дело с особым видом диполь-дипольных взаимодействий, это водородная связь. Давайте возьмем фтороводород, HF, несколько молекул. Например, фтороводород здесь и здесь, еще нарисую здесь. У фтора очень высокая электроотрицательность. Это один из трех самых электроотрицательных атомов в периодической таблице. Он очень эффективно оттягивает электроны. Это случай очень сильного диполь-дипольного взаимодействия, здесь все электроны перемещаются ко фтору. Итак, здесь возникает частичный положительный заряд, и частичный отрицательный заряд, частичный положительный, частичный отрицательный, положительный, отрицательный и так далее. Итак, вот что у нас получилось. Это настоящее дипольное взаимодействие. Но это очень сильное дипольное взаимодействие, его называют водородная связь, потому что здесь взаимодействуют водород и атом с очень высокой электроотрицательностью, и электроотрицательный атом оттягивает к себе электрон водорода. Водород здесь в виде протона, у него положительный заряд, и он сильно притягивается к отрицательно заряженным концам диполей. Все это – силы Ван-дер-Ваальса. И самая слабая из них – дисперсионная сила. А если у нас есть молекула с электроотрицательным атомом, у нас образуется диполь, молекула становится полярной, и положительные и отрицательные полюса будут притягиваться. Это диполь-дипольное взаимодействие. Но самое сильное взаимодействие - это водородная связь, потому что атом с очень высокой электроотрицательностью полностью забирает к себе электрон водорода. Точнее, почти полностью забирает к себе электрон водорода. Эти атомы все еще делят электрон, но он почти всегда на этой стороне молекулы. Так молекулы сильнее связаны друг с другом и температура кипения будет больше. Итак, у нас есть дисперсионные силы Лондона, дипольные и полярные связи, и водородные связи. Все это - силы Ван-дер-Ваальса. Сила межмолекулярного взаимодействия растет и повышается температура кипения, потому что нужно затратить все больше и больше энергии, чтобы отделить эти молекулы друг от друга. У нас заканчивается время... Получился неплохой обзор разных типов межмолекулярных взаимодействий, не ковалентной и не ионной природы. В следующем ролике я расскажу о некоторых типах ковалентных и ионных структур, и об их влиянии на температуру кипения. Subtitles by the Amara.org community

Классификация вандерваальсовых сил

Вандерваальсово взаимодействие состоит из трёх типов слабых электромагнитных взаимодействий:

  • Ориентационные силы , диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твёрдом состоянии. Энергия такого взаимодействия обратно пропорциональна кубу расстояния между диполями.
  • Дисперсионное притяжение (лондоновские силы, дисперсионные силы). Обусловлены взаимодействием между мгновенным и наведённым диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.
  • Индукционное притяжение (поляризационное притяжение). Взаимодействие между постоянным диполем и наведённым (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

До сих пор многие авторы исходят из предположения, что вандерваальсовы силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного предположения построены многие двумерные модели, «описывающие» свойства, в частности

Уравнение Клапейрона - Менделеева (см. § 40) описывает поведение идеального газа, молекулы которого можно рассматривать как материальные точки, не взаимодействующие друг с другом (см. § 41). Молекулы реального газа имеют, как мы знаем, некоторый, хотя и очень малый, размер и связаны между собой силами сцепления, правда, тоже малыми. Однако при низких температурах или при высоких давлениях, когда молекулы газа находятся близко друг от друга, пренебрегать их размерами и силами сцепления уже недопустимо. В этих случаях уравнение Клапейрона - Менделеева, т. е. уравнение состояния идеального газа, оказывается уже весьма неточным. Чтобы получить уравнение состояния реального газа, голландский физик Ван-дер-Ваальс в 1873 г. ввел в уравнение Клапейрона - Менделеева поправки на размер молекул и на действие сил сцепления между ними. Это было

сделано следующим образом. В уравнении Клапейрона - Менделеева для моля газа

где объем газа, или, что то же, объем сосуда, предоставленный для движения молекул. У реального газа часть этого объема занимают сами молекулы. Поэтому фактический свободный объем, в котором могут двигаться молекулы реального газа, будет меньше и равен Подставляя это значение вместо в формулу (1), получим

Объем занимаемый самими молекулами, больше суммы собственных объемов этих молекул, так как даже при самой плотной упаковке между молекулами остались бы «бесполезные» зазоры, недоступные для движения молекул (рис. 121). В действительности же эти зазоры будут еще большими, так как силы отталкивания не допустят такой плотной упаковки молекул. Расчеты показывают, что объем, занимаемый самими молекулами моля газа, приблизительно равен учетверенному собственному объему этих молекул:

где - собственный объем молекулы, постоянная Авогадро.

Давление в формуле (1), производимое на идеальный газ стенками сосуда, является внешним. Действие сил притяжения между молекулами реального газа вызывает добавочное сжатие газа, создавая тем самым добавочное внутреннее давление раналогичное внутреннему давлению жидкости (см. § 59). Поэтому фактическое давление реального газа будет больше и равно Подставляя это значение вместо в формулу (2), получим

Нетрудно установить, что внутреннее давление должно быть приблизительно пропорционально квадрату плотности газа. Действительно, разделим газ воображаемой плоскостью на две части (рис. 122) и рассмотрим слои газа, прилежащие к этой плоскости. Очевидно, что сила взаимного притяжения этих слоев пропорциональна числам молекул в каждом их них, т. е. пропорциональна квадрату числа молекул газа. Но число молекул пропорционально плотности газа Поэтому сила притяжения слоев, а следовательно, и внутреннее давление пропорциональны квадрату плотности: Так как плотность обратно пропорциональна объему, то внутреннее давление обратно пропорционально квадрату объема:

где а - коэффициент пропорциональности. Подставляя выражение в формулу (3), получим

Это и есть уравнение состояния реального газа или уравнение Ван-дер-Ваальса для моля газа. Преобразуя это уравнение так, как это было сделано с уравнением Клапейрона - Менделеева (см. § 40), получим уравнение Ван-дер-Ваальса для любой массы газа

где V - объем массы газа, молярная масса газа.

При малых давлениях и высоких температурах объем становится большим; поэтому и т. е. поправки в уравнении Ван-дер-Ваальса становятся пренебрежимо малыми и оно превращается в уравнение Клапейрона - Менделеева.

Величины являются почти постоянными для каждого газа. Например, для азота Определяются они экспериментально; надо написать уравнение Ван-дер-Ваальса для двух известных из опыта состояний газа и решить систему двух уравнений относительно неизвестных

Проведем некоторый анализ уравнения Ван-дер-Ваальса. С этой целью прежде всего составим таблицы зависимости давления от объема газа при постоянной температуре для нескольких значений температуры Результаты таких расчетов представлены графически на рис. 123. Полученные кривые - изотермы Ван-дер-Ваальса - оказываются довольно своеобразными: при низких температурах они имеют волнообразные участки (максимумы и минимумы), при некоторой температуре на изотерме имеется только точка перегиба К, при высоких температурах изотермы Ван-дер-Ваальса похожи на изотермы идеального газа (Бойля-Мариотта или Клапейрона-Менделеева).

С математической точки зрения такой характер изотерм объясняется очень просто. Если привести уравнение Ван-дер-Ваальса к нормальному виду, то оно окажется кубическим уравнением относительно объема

Кубическое уравнение может иметь либо три вещественных корня, либо один вещественный корень и два мнимых. Очевидно, что первому случаю соответствуют изотермы при низких температурах (три значения объема газа и отвечают одному значению давления а второму случаю - изотермы при высоких температурах (одно значение объема отвечает одному значению давления

Формулы термодинамики идеальных газов в применении к реальным газам пригодны только для приближенных расчетов. Составление точного уравнения состояния сжатых газов и паров является делом весьма сложным, требующим большого числа измерений, причем обычно не удается свойства разных паров выразить простыми однотипными уравнениями состояния. Если ограничиваться качественной характеристикой термодинамических свойств паров, то особого внимания заслуживает уравнение состояния

предложенное в 1873 г. голландским физиком Ван-дер-Ваальсом. Это уравнение отличается от уравнения Клапейрона - Менделеева двумя поправками: объемной поправкой и поправкой на так называемое внутреннее давление По мысли Ван-дер-Ваальса а и b должны быть величинами постоянными, не зависящими от температуры, плотности и давления. Для химически различных веществ имеют различные значения.

Объемная поправка в уравнении Ван-дер-Ваальса приобретает значение, когда общий объем, занятый телом, не настолько велик, чтобы в сравнении с ним можно было пренебречь той частью этого объема, которая занята самими молекулами тела. При обычной плотности газов среднее расстояние между молекулами примерно в несколько десятков раз превышает диаметр молекул. Поэтому объемная поправка существенную роль играет лишь для олее сильно сжатых газов и для жидкостей.

То же самое следует сказать и о внутреннем давлении которое возникает в результате взаимного притяжения молекул. Если плотность газа велика, эти силы взаимного притяжения молекул создают давление поверхностного слоя газа на внутренние слои. В жидкостях внутреннее давление достигает тысячи и даже десятков тысяч атмосфер. Величина внутреннего давления зависит от формы поверхности (Для вогнутой поверхности оно меньше, для выпуклой - больше). Этой зависимостью внутреннего давления от формы поверхности объясняются капиллярные явления. Теплота, которую необходимо затратить для испарения жидкости, тем больше, чем больше внутреннее давление жидкости. Несомненно также, что существует зависимость между внутренним давлением правлением насыщенного пара жидкости. Вообще внутреннее давление играет исключительно важную роль в самых разнообразных явлениях.

Для разреженных газов (когда поправка на внутреннее давление мала в сравнении с и когда мало в сравнении с уравнение Ван-дер-Ваальса совпадает с уравнением Клапейрона - Менделеева. Для сжатых газов уравнение Ван-дер-Ваальса оправдывается в немногих случаях; обычно оно оказывается неточным. Оно удовлетворительно передает ход изотерм двуокиси углерода, этилена и азота, причем имеют следующие вначения:

(эти значения имеют место, если за единицу объема принять объем, занимаемый газом при давлении в одну атмосферу и тогда

Чтобы получить совпадение с данными опыта и сохранить в то же время форму уравнения Ван-дер-Ваальса, необходимо в различных интервалах температур и плотности пользоваться для реальных газов различными численными значениями величин Приходится, следовательно, признать, что эти величины являются функциями температуры и объема. Выполненное Ван Лааром обстоятельное исследование этого вопроса показывает, что зависимость а и b от температуры и объема сложна. Главная ценность уравнения Ван-дер-Ваальса в том, что качественно оно не теряет смысла при переходе к жидкому состоянию.

На рис. 3 изображены изотермы газа и жидкости по уравнению Ван-дер-Ваальса. При высоких температурах (см., например, изотерму ) они мало отличаются (в особенности в области больших от гипербол. При понижении температуры (см. изотерму ) заметно искривление, которое при некоторой температуре приводит к перегибу изотермы в точке К. Эта точка изображает критическое состояние вещества.

Для всех температур ниже, чем на изотермах, вычерченных по уравнению Ван-дер-Ваальса, существует изгиб, который выражен тем резче, чем ниже температура, и имеет вид волны (см., например, на изотерме волну в участке изображенную пунктиром). На этом участке изотерм наблюдается своеобразное противоречие между уравнением Ван-дер-Ваальса и данными опыта. Противоречие заключается в том, что соответствующие изотермы, вычерченное по данным опыт а, имеют вместо волнового изгиба прямолинейный участок (на изотерме участок изображенный сплошной линией). Этот участок изотермы, совпадающий с линией неизменного давления - с изобарой, означает переход вещества из жидкого состояния в газообразное.

Рис. 3. Изотермы по уравнению Ван-дер-Ваальса

Пусть будут те значения температуры и давления, при которых рассматриваемое вещество может существовать в двух находящихся друг с другом в равновесии фазах - в жидкой и газообразной (жидкость и ее насыщенный пар). И пусть точки и (рис. 3) изображают эти два состояния. Абсциссы точек указывают значения мольного объема жидкости и пара Очевидно, что равновесие будет существовать при любом соотношении между количествами жидкости и пара. Возьмем х долей моля жидкости и долей моля ее насыщенного пара. Очевидно, что объем, занятый этой двухфазной системой, равен

Когда х изменяется от 1 до 0, и возрастает от Ясно, что точка, изображающая состояние рассматриваемой двухфазной системы, имеющей температуру и давление находится на прямой, соединяющей точки Если изменять соотношение взятого количества жидкостей и пара, точка, изображающая состояние системы, будет перемещаться между

С изменением давления изменяется температура кипения, т. е. температура равновесия жидкости и пара. Таким образом, выше и ниже рассмотренной прямой должны лежать аналогичные прямолинейные участки изотерм, изображающие испарение жидкости при давлении, большем и меньшем Вся область, очерченная на чертеже точечным пунктиром, является областью двухфазных состояний, областью равновесия жидкости и насыщенного пара. Направо от этой области вещество находится в газообразном состоянии, налево - в жидком (и твердом).

В области равновесия жидкости и пара действительные изотермы совпадают с изобарами. Спрашивается, каков же смысл волнообразного изгиба в этой области изотерм, вычерченных по уравнению Ван-дер-Ваальса? По мысли Ван-дер-Ваальса, изгиб изотермы, обозначенный на чертеже жирным пунктиром, определяет неустойчивые, так называемые метастабильные, состояния. Эта мысль связана с гипотезой, что процесс, изображаемый участком изгиба теоретической изотермы, означает переход жидкости в газообразное состояние без расслоения вещества на две фазы (хотя такой процесс никогда не был наблюден). Некоторым подтверждением этого взгляда служат действительно обнаруженные метастабильные состояния жидкости и пара. Опыт показывает, что жидкость можно перегреть перед испарением и переохладить перед замерзанием. Более того, можно сказать, что жидкость переходит в пар или в лед при нормальной для данного давления температуре лишь тогда, когда обеспечены условия, облегчающие этот переход; в противном случае закипание наступит при температуре более высокой и

замерзание - при более низкой. Загрязнение воды песчинками, а также пористость сосуда, стенки которого обычно содержат поглощенный воздух, благоприятствуют процессу кипения. Воду, тщательно очищенную от механических примесей, можно нагреть при нормальном давлении до 140° С и даже выше, после чего она вскипает со взрывом. Указанный сдвиг температуры закипания относится только к начальному моменту процесса закипания. Когда кипение уже началось, температура быстро падает до того значения, которое является нормальным для поддерживаемого во время опыта давления.

Чтобы связать идею о метастабильных состояниях с формой изотерм Ван-дер-Ваальса, следует представить себе, что в непосредственной близости к изотерме выше нее, проведен еще ряд изотерм. Так как все они имеют изгиб, аналогичный изображенному на чертеже пунктиром, то они, очевидно, дважды пересекут прямую в участке, примыкающем к точке Следовательно, точки, расположенные на прямой поблизости от должны по уравнению Ван-дер-Ваальса соответствовать более высоким температурам, чем и перемещение вдоль этой прямой (в начале ее) должно означать перегрев жидкости.

Чем большему давлению подвергнута жидкость, тем выше ее температура кипения, тем больше плотность ее насыщенного пара и соответственно меньше мольный объем пара. При повышении температуры изобарные участки изотерм, ограниченные слева и справа значениями мольных объемов жидкости и пара, становятся все короче и, наконец, смыкаются в точку (точка К на рис. 3), где плотность жидкости и плотность насыщенного пара равны. Вся область равновесия жидкости и пара располагается, таким образом, под изобарой проходящей через критическую точку Вся область жидкого состояния расположена под изотермой Чтобы сконденсировать газ в жидкость, надо, следовательно, охлаждать его до температуры ниже критической. При этом достаточно подвергнуть газ давлению, немного большему, чем критическое давление и весь газ сконденсируется в жидкость; при меньшем давлении может существовать одновременно и жидкая и газообразная фаза.

Если температура газа остается выше критической, никакое давление не может привести его к сжижению. Настойчивые попытки сконденсировать воздух в жидкость путем повышения давления до 3000 атм и более, но без необходимого для этой цели сильного охлаждения предпринимались вплоть до 1869 г., когда Эндрюс, впервые экспериментально изучая изотермы обнаружил существование критической температуры. Спустя четыре года Ван-дер-Ваальсом было предложено уравнение состояния, и учение о критическом состоянии приобрело должную ясность. Стало очевидным, что для конденсации газов усилия должны быть направлены не столько на повышение давления, сколько на понижение температуры.

В 1877 г. сначала Кальете (в Париже), потом Пикте (в Женеве) сконденсировали составные части воздуха-азот и кислород. Впоследствии было обнаружено, что критическая температура кислорода равна -118,8° С, а азота -147,13° С. В 1895 г. Ольшевскому и несколько позднее, в 1898 г., Дьюару удалось получить жидкий водород, критическая температура которого оказалась равной -239,91° С. И, наконец, в 1908 г. Камерлинг-Оннес (в лучшей в мире криогенной лаборатории в Лейдене) получил жидкий, а Кесом там же в 1926 г.- твердый гелий; критическая температура этого вещества оказалась равной -267,84° С. (Это наинизшая критическая температура.)

На рис. 4 показаны изотермы вычерченные по экспериментальным данным. Кривая представляет собой граничную кривую, отделяющую область равновесия жидкости и пара от области (справа) газообразной фазы; аналогично граничная кривая отделяет двухфазную область от области жидкости.

Весьма ценное свойство уравнения Ван-дер-Ваальса и других уравнений состояния, построенных по тому же типу, заключается в зависимости, существующей между численными значениями констант с одной стороны, и численными значениями термодинамических параметров, определяющими критическое состояние вещества с другой. В силу этой зависимости критические значения температуры, давления и плотности могут быть вычислены, коль скоро найдены из опыта константы и обратно, зная критическое состояние, можно рассчитать и построить всю систему изотерм.

Рис. 4. Изотермы для двуокиси углерода (площади и равны)

Уравнение Ван-дер-Ваальса есть уравнение третьей степени относительно объема у.

Перепишем его в следующем виде:

и будем рассматривать мольный объем у как величину, играющую роль основной переменной, а давление и температуру - как величины, определяющие, совместно с константами численное значение коэффициентов уравнения. Очевидно, что уравнение (1.23) имеет, вообще говоря, три корня значение которых зависит от значений коэффициентов. При температурах выше критической два корня являются мнимыми и только один вещественный; в этой области газообразных состояний каждому значению давления и температуры, заданным совместно, соответствует одно значение мольного объема; графически это означает, что здесь любая из изотерм в одной лишь точке пересекает любую из изобар. Мы видели уже, что ниже критической изотермы расположена область равновесия жидкости и пара, где изотермы, построенные по уравнению Ван-дер-Ваальса, пересекаются с изобарами, отвечающими равновесию, в трех точках. Здесь, следовательно, для соответственно выбранных значений температуры и давления все три корня рассматриваемого уравнения являются вещественными и неодинаковыми. Близ критического состояния численные значения корней мало отличаются друг от друга, и в критической точке они совпадают.

В действительности это отношение для большинства веществ ближе к 3.7.

В гл. VIII приведены более подробные сведения и указан более общий вывод формул типа (1.24), пригодный и для других уравнений состояния.

Критические явления

Изотерма при температуре Т с играет особую роль в теории состояния вещества. Изотерма, соответствующая температуре ниже Т с> ведет себя так, как уже описано: при определенном давлении газ конденсируется в жидкость, которую можно различать по наличию поверхности раздела. Если же сжатие осуществлять при Т с, то поверхность, разделяющая две фазы, не появляется, а точка конденсации и точка полного перехода в жидкость сливаются в одну критическую точку газа. При температуре выше Т с газ невозможно обратить в жидкость никаким сжатием. Температура, давление и мольный объем в критической точке называются критической температурой Т с, критическим давлением р с и критическим мольным объемом V c вещества. Собирательно параметры р с, V c , и Т с называются критическими константами данного газа (табл. 10.2).

При Т>Т С образец представляет собой фазу, полностью занимающую объем содержащего ее сосуда, т.е. по определению является газом. Однако плотность этой фазы может быть значительно большей, чем это типично для газов, поэтому обычно предпочитают название "сверхкритический флюид" (supercritical fluid). При совпадении точек Т с и Р с жидкость и газ неразличимы.

Таблица 10.2

Критические константы и температуры Бойля

То К

Р с, бар

V c , мл моль -1

Т B К

т B /т с

В критической точке изотермический коэффициент сжимаемости

равен бесконечности, поскольку

Поэтому вблизи критической точки сжимаемость вещества так велика, что ускорение силы тяжести приводит к значительным различиям плотности в верхней и нижней частях сосуда, достигающим 10% в столбике вещества высотой всего несколько сантиметров. Это затрудняет определение плотностей (удельных объемов) и, соответственно, изотерм р - V вблизи критической точки. В то же время критическую температуру можно определить весьма точно как такую температуру, при которой поверхность, разделяющая газообразную и жидкую фазы, исчезает при нагревании и вновь появляется при охлаждении. Зная критическую температуру, можно определить критическую плотность (и, соответственно, критический мольный объем), пользуясь эмпирическим правилом прямолинейного диаметра (правило Кальете Матиаса), согласно которому средняя плотность жидкости и насыщенного пара является линейной функцией температуры:

(10.2)

где A и В - постоянные для данного вещества величины. Экстраполируя прямую средней плотности до критической температуры, можно определить критическую плотность. Высокая сжимаемость вещества вблизи критической точки приводит к росту спонтанных флуктуаций плотности, которые сопровождаются аномальным рассеянием света. Это явление называется критической опалесценцией.

Уравнение Ван-дер-Ваальса

Уравнение состояния и явления переноса в реальных газах и жидкостях тесно связаны с силами, действующими между молекулами. Молекулярно-статистическая теория, связывающая общие свойства с межмолекулярными силами, сейчас хорошо разработана для разреженных газов и в меньшей степени - для плотных газов и жидкостей. Вместе с тем измерение макроскопических свойств позволяет в принципе определить закон, по которому действуют силы между молекулами. Более того, если вид взаимодействия определен, то становится возможным получить уравнение состояния или коэффициенты переноса для реальных газов.

Для идеальных газов уравнение состоянияили

Это соотношение совершенно точно в том случае, когда газ весьма разрежен или его температура сравнительно высока. Однако уже при атмосферных давлении и температуре отклонения от этого закона для реального газа становятся ощутимыми.

Предпринималось много попыток для учета отклонений свойств реальных газов от свойств идеального газа путем введения различных поправок в уравнение состояния идеального газа. Наибольшее распространение вследствие простоты и физической наглядности получило уравнение Ван- дер-Ваальса (1873).

Ван-дер-Ваальс сделан первую попытку описать эти отклонения, получив уравнения состояния для реального газа. Действительно, если уравнение состояния идеального газа pV = RT применить к реальным газам, то, во-первых, под объемом, могущим изменяться до пуля, необходимо понимать объем межмолекулярного пространства, так как только этот объем, как и объем идеального газа, может уменьшаться до нуля при неограничeнном возрастании давления.

Первая поправка в уравнении состояния идеального газа рассматривает собственный объем, занимаемый молекулами реального газа. В уравнении Дюпре (1864)

(10.3)

постоянная b учитывает собственный мольный объем молекул.

При понижении температуры мeжмолeкулярное взаимодействие в реальных газах приводит к конденсации (образованию жидкости). Межмолекулярное притяжение эквивалентно существованию в газе некоторого внутреннего давления (иногда его называют статическим давлением). Изначально величина была учтена в общей форме в уравнении Гирна (1865)

Й. Д. Ван-дер-Ваальс в 1873 г. дал функциональную интерпретацию внутреннего давления. Согласно модели Ван-дер-Ваальса силы притяжения между молекулами (силы Ван-дер-Ваальса) обратно пропорциональны шестой степени расстояния между ними или второй степени объема, занимаемого газом. Считается также, что силы притяжения суммируются с внешним давлением. С учетом этих соображений уравнение состояния идеального газа преобразуется в уравнение Ван-дер-Ваальса:

(10.5)

или для 1 моля

(10.6)

Значения постоянных Ван-дер-Ваальса а и b, которые зависят от природы газа, но не зависят от температуры, приведены в табл. 10.3.

Уравнение (10.6) можно переписать так, чтобы выразить в явном виде давление

(10.7)

или объем

(10.8)

Таблица 10.3

Постоянные Ван-дер-Ваальса для различных газов

а,

л 2 бар моль -2

ь,

см 3 моль -1

а,

л 2 бар моль -2

ь,

см 3 моль -1

Уравнение (10.8) содержит объем в третьей степени и, следовательно, имеет три действительных корня, или один действительный и два мнимых.

При высоких температурах уравнение (10.8) имеет один действительный корень, и по мере повышения температуры кривые, вычисленные по уравнению Ван-дер-Ваальса, приближаются к гиперболам, соответствующим уравнению состояния идеального газа.

На рис. 10.4 приведены изотермы, вычисленные по уравнению Ван-дер- Ваальса для диоксида углерода (значения констант а и b взяты из табл. 10.3). На рисунке показано, что при температурах ниже критической (31,04°С) вместо горизонтальных прямых, соответствующих равновесию жидкости и пара, получаются волнообразные кривые 1-2-3-4-5 с тремя действительными корнями, из которых только два, в точках 1 и 5, физически осуществимы. Третий корень (точка 3) физически не реален, поскольку находится на участке кривой 2-3-4, противоречащем условию стабильности термодинамической системы -

Рис. 10.4. Изотермы Ван-дер-Ваальса для С0 2

Состояния на участках 1-2 и 5-4 , которые отвечают переохлажденному пару и перегретой жидкости, соответственно, являются неустойчивыми (метастабильиыми) и могут быть лишь частично реализуемы в специальных условиях. Так, осторожно сжимая пар выше точки 1 (см. рис. 10.4), можно подняться по кривой 1-2. Для этого необходимо отсутствие в паре центров конденсации, и в первую очередь пыли. В этом случае пар оказывается в пересыщенном, т.е. переохлажденном состоянии. И наоборот, образованию капелек жидкости в гаком паре способствуют, например, попадающие в него ионы. Это свойство пересыщенного пара используется в известной камере Вильсона (1912), применяемой для регистрации заряженных частиц. Движущаяся заряженная частица, попадая в камеру, содержащую пересыщенный пар, и соударяясь с молекулами, образует на своем пути ионы, создающие туманный след - трек, который фиксируется фотографически.

Согласно правилу Максвелла (the Maxwell construction ), которое имеет теоретическое обоснование, для того, чтобы расчетная кривая соответствовала экспериментальной равновесной изотерме, нужно вместо кривой 1-2-3-4-5 провести горизонтальную прямую 1-5 так, чтобы площади 1-2-3-1 и 3-4-5-3 были равны. Тогда ордината прямой 1-5 будет равна давлению насыщенного пара, а абсциссы точек 1 и 5 - мольным объемам пара и жидкости при данной температуре.

По мере повышения температуры все три корня сближаются, и при критической температуре Т с становятся равными. В критической точке изотерма Ван-дер-Ваальса имеет точку перегиба

с горизонтальной касательной

(10.9)

(10.10)

Совместное решение этих уравнений дает

что позволяет определять константы уравнения Ван-дер-Ваальса из критических параметров газа. Соответственно, согласно уравнению Ван-дер- Ваальса, критический фактор сжимаемости Z c для всех газов должен быть равен

Из табл. 10.2 очевидно, что хотя значение Z c для реальных газов приблизительно постоянно (0,27- 0,30 для неполярных молекул), оно все же заметно меньше вытекающего из уравнения Ван-дер-Ваальса. Для полярных молекул наблюдается еще большее расхождение.

Принципиальное значение уравнения Ван-дер-Ваальса определяется следующими обстоятельствами:

  • 1) уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции /(/?, V Т), описывающей свойства реальных газов;
  • 2) уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния (см. ниже);
  • 3) с помощью уравнения Ван-дер-Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван-дер-Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме - см. выражения (10.1), (10.2).

Причиной недостаточной точности уравнения Ван-дер-Ваальс считал ассоциацию молекул в газовой фазе, которую не удается описать, учитывая зависимость параметров а и b от объема и температуры, без использования дополнительных постоянных. После 1873 г. сам Ван-дер-Ваальс предложил еще шесть вариантов своего уравнения, последнее из которых относится к 1911 г. и содержит пять эмпирических постоянных. Две модификации уравнения (10.5) предложил Клаузиус, и обе они связаны с усложнением вида постоянной Ь. Больцман получил три уравнения этого типа, изменяя выражения для постоянной а. Всего известно более сотни подобных уравнений, отличающихся числом эмпирических постоянных, степенью точности и областью применимости. Выяснилось, что ни одно из уравнений состояния, содержащих менее пяти индивидуальных постоянных, не оказалось достаточно точным для описания реальных газов в широком диапазоне р, V ", Т, и все эти уравнения оказались непригодными в области конденсации газов. Из простых уравнений с двумя индивидуальными параметрами неплохие результаты дают уравнения Дитеричи и Бертло.

Изотермы, построенные при одной и той же температуре для разных газов, выглядят, конечно, по-разному, потому что константыаи и связанные с ними критические величины и Тк различны для разных газов. Напомним, что изотермы идеальных газов не зависят от индивидуальных свойств газов (если изотермы строятся для одного моля).

Можно, однако, и для неидеальных газов написать уравнение изотермы так, чтобы оно не зависело от природы газа, т. е. было универсальным. Для этого нужно, чтобы параметры состояния газа находились в одинаковых отношениях к соответствующим критическим параметрам. Другими словами, любые газы с одинаковыми (или, как говорят, соответственными) отношениями

будут описываться идентичными уравнениями. Безразмерные параметры и называются приведенными параметрами.

Подставим в уравнение Ван-дер-Ваальса

вместо соответственно выразив и по уравнениям (67.2). Тогда получим:

В этом уравнении не содержатся константы, характеризующие отдельное вещество. Поэтому оно является универсальным уравнением, справедливым для всех веществ.

Уравнение (70.1) называется приведенным уравнением состояния. Из него следует, что если вещества обладают двумя одинаковыми приведенными параметрами из трех, то и третий параметр тоже одинаков для этих веществ. Этот закон носит название закона соответственных состояний. Он выражает тот факт, что, изменяя масштаб, которым измеряются две из трех величин (например,

И V), характеризующих состояние вещества, т. е. используя приведенные параметры, можно совместить изотермы всех веществ.

Закон соответственных состояний тоже является приближенным, хотя его точность несколько выше точности самого уравнения Ван-дер-Ваальса, ибо он не зависит от конкретного вида уравнения состояния.

С помощью закона соответственных состояний можно вычислить неизвестные изотермы различных газов, если известны их критические параметры и измерены изотермы других газов.